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ABSTRACT

Jalufka, Nelson Wayna (Ph.D., Physics)

An Investigation of Satellites to the Resonance Lines in Some

Hydrogen-Like Ions

Thesis directed by Professor John Cooper

This research has been an experimental and theoretical investi-

gation of the origin of satellites to the resonance lines of the

hydrogen-like ions of boron, carbon, and nitrogen.

A theta pinch was employed in conjunction with a grazing inci-

dence spectrograph to measure the wavelengths of the satellites.

The spectroscopic data also provided an estimate of the satellite to

resonance line intensity ratio.

Wavelenghts of spectral lines due to transition from doubly

excited states were calculated by a Hartree-Fock computer program.

Wave-functions were also calculated by this program and were used to

obtain the oscillator strengths of the transitions.

Calculations of the upper limit of the satellite to resonance

line intensity ratio showed that the observed intensity of the

satellites was much greater than could be explained by present theo-

ries, and further experimental work confirmed that the lines investi-

gated were not satellites but were due to highly ionized argon which

was present as an impurity in the filling gas of this and many

previous experiments.

This abstract is approved as to form and content. I recommend its
publication.

Signed
John Cooper
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CHAPTER I

INTRODUCTION

A. History

Long-wavelength satellites to the resonance line of a hydrogen-

like ion were first observed in the laboratory by Compton and Boyce

(1928). They reported two weak satellites to the resonance line of

singly ionized helium and suggested that these lines were due to the

excitation of both electrons of neutral helium into the n = 2

level and the radiation accompanying the return of one electron to

the ground state. This explanation was later confirmed by theoreti-

cal calculations (Kiang, Ma, and Wu, 1936).

Edlen and Tyrin (1939) published a vacuum spark spectrum of

carbon covering the region from 60 2 to 15 2. It was expected that

the spectrum in this region would be very simple, consisting of the

normal helium-like and hydrogen-like series. However, a considerable

number of additional lines appeared in distinct groups to the long-

wavelength side of the helium-like and hydrogen-like resonance lines.

The proximity of these lines to the resonance lines indicated that

they were due to transitions of essentially the same type as the

resonance transition but at a slightly lower energy. These lines

were explained by transitions of the type

ls2 nZ - ls 2p nt (1.1)
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for the helium-like satellites and

is nZ - 2p nX (1.2)

for the hydrogen-like case. This explanation appeared reasonable as

the presence of the additional outer electron would reduce the

potential field in which the transition takes place and, consequently,

cause a shift to longer wavelength. The prominent satellites were

attributed to n = 2, as those with greater n would rapidly move

nearer to, and merge with, the resonance line. As a consequence of

this explanation, the existence of discrete energy levels, lying

well above the ionization limit of the ion in which the transition

takes place, had to be assumed.

More recently, the observation of such satellites has been

reported from a number of laboratory plasmas, including sparks

(Flemberg, 1942; Feldman and Cohen, 1969; Goldsmith, 1969; Lie and

Elton, 1971), high-temperature pinches (Sawyer, 1962; Roth and Elton,

1968; Peacock, Speer, and Hobby, 1969; Gabriel and Paget, 1972;),

and laser-produced plasmas (Gabriel, 1971). The observation of

similar satellites in recent solar spectra (Fritz, et al., 1967;

Rugge and Walker, 1968; Jones, Freeman, and Wilson, 1968; Walker and

Rugge, 1970) has led to a renewed interest in the origin of these

lines.
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B. Applications to Astrophysics

In order to establish the importance of doubly excited states

to problems of astrophysical interest, it is first necessary to

investigate the physical processes by which these states may be

populated and depopulated. This is necessary since most astrophy-

sical plasmas cannot be described in the limited framework of thermo-

dynamic equilibrium and a knowledge of the rate coefficients of the

different competing processes is important in determining such

properties as ionization balance as well as the distribution of

electrons among the various energy levels of the atom or ion.

Doubly excited states may be populated, as well as depopulated,

by electron collisions. Photoexcitation may also populate these

states. The inverse processes is spontaneous and stimulated (if a

radiation field is present) emission. Spontaneous emission is the

process responsible for the emission of the satellite lines. A

more interesting process, for the formation of the doubly excited

state and the one that was the basis for this research, is inverse

autoionization. In this process an electron combines in a radiation-

less transition with an ion of charge Z to form an ion of charge

Z - 1 in a doubly excited state. The doubly excited state then

decays by spontaneous emission and the two step process is called

dielectronic recombination These two processes are not applicable

to all doubly excited states, as certain selection rules must be

obeyed. These selection rules which consist of conservation of

energy, total angular momentum, and parity will be discussed in

Chapter II.
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Transitions between doubly excited states, which may undergo

autoionization and normal (singly excited) states, have several

astrophysical applications. The natural width of such lines are

often much greater than widths due to random Doppler broadening

or collisional broadening, since the lifetime to autoionization is

often small. This large width makes these lines very efficient

absorbers of radiation, as they will only become saturated at

relatively large values of the equivalent width. There is a very

large probability that each absorption of a photon in the line will

be followed by ionization, so that the mechanism of line formation

is pure absorption. This greatly simplifies the analysis.

The astrophysical importance of dielectronic recombination has

been pointed out by Burgess (1965a). This process is, perhaps, the

most important role played by doubly excited states in astrophysical

situations. The problem which led Burgess to examine the process

in sufficient detail to realize its importance was the discrepancy

between the temperature of the Solar Corona as deduced from the

observed widths of the "forbidden" emission lines of FeX, FeXIV, and

CaXV and as deduced from ionization balance calculations. The

widths of the emission lines were interpreted as Doppler widths and

indicated a temperature of about 2 x 10 K (Evans, 1963). The

ionization balance calculations were carried out by balancing the

rates of ionization due to electron collisions and the rates of

recombination, which was assumed to be radiative. These calculations

indicated a temperature of 106 OK. The factor of two discrepancy
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does not, at first, appear to be serious. However, in order to

bring the calculated temperature into agreement with the Doppler

temperature the recombination rate had to be increased by a factor

of 30. The same results could have been achieved by decreasing the

ionization rate by the same factor. Careful examination of this

process however, revealed that the ionization cross section used

was essentially correct since the theoretical values were verified

by experimental measurements. Burgess performed detailed calcula-

tion of the dielectronic recombination rates for many elements in

various stages of ionization. These calculations showed that if the

temperature was high enough so that a substantial fraction of free

electrons could make radiationless transition to doubly excited

levels with large principal quantum number, then the total rate

coefficient summed over many levels close to the second and higher

series limits might exceed the corresponding rate coefficient for

radiative recombination by one or more orders of magnitude. These

results were applied to the Solar Corona and were successful in

removing the discrepancy in the temperature.

The processes of autoionization and dielectronic recombination

have also been shown to be of importance in the interstellar medium

(Goldberg, 1966). In particular, a discrepancy exists in the Ca/Na

abundance ratio of the interstellar medium. Analysis of inter-

stellar line intensities leads to a Ca/Na abundance ratio of about

0.03, whereas its value in the sun and other stars is about 0.70
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which is a factor of 23 larger (Aller, 1963). The observed inten-

sities are for the D lines of NaI and the K lines of CaII. Since

NaII and CaIII are expected to be the most abundant ionization

stages, determination of the abundance ratio requires a knowledge

of the ionization balance. The interstellar ionization theory

developed by Stromgren (1948) depends on an ionizational balance

between photoionization and radiative recombination. The abundance

discrepancy has been attributed to a lack of knowledge of the

stellar ultraviolet radiation field which determines the photo-

ionization rate. However, it now appears possible that the photo-

ionization rates may be in error because they do not take into

account transitions in NaI and CaII from their ground states to

levels which undergo autoionization. It is not clear if the

inclusion of these transitions will clear up the abundance ratio

anomaly. In any case however, the effects of autoionization must

be taken into account if the ionization equilibrium of the inter-

stellar medium is to be properly discussed.



CHAPTER II

THEORY AND CALCULATIONS

A. Multi-Electron Atoms and the Central Field Approximation

An analysis of the radiation emitted by a plasma requires not

only a knowledge of the various atomic processes which occur in

the plasma but also attention to the details of atomic structure.

Calculations of the energy levels of the various atoms or ions in

the plasma must be carried out in the context of a well defined

model of atomic structure. The details of the model which was

employed in this investigation will now be developed (Slater,

1960).

The general Hamiltonian (in atomic units) for a multi-

electron atom may be written (including only the spin-orbit

relativistic term)

H [1 V2 - Z ]+ E 1 +E (ri)Li ' Si ( 2
'

1 )

i ij i

alternatively

H = Ho + H1 + H2 (2.2)

with two alternative ways of expressing the components. The general

expression is given first followed by the central field approximation

expression in brackets,



1 _

r__(- i - v(ri) +
rij r isi~j

H2 H2 = (r i )Li Si
i i

1 1 V(r i)
£(ri2 2 2 r ar

2m c i i

where V(ri) is the approximate central field in which the elec-

tron moves (Shore and Menzel, 1968).

The term H is just a sum of terms which are the Hamil-

tonians of single,spinless electrons moving in a central force

field. Schrodinger's equation for such an electron treated as a

point charge is

H0 [ V2+ Vo(r )] = E0

where

only.

(2.6)

Vo'(r) is the potential field and is a function of Irl

Since the atomic nucleus and the electron possess a charge,

(1 V2 -

2 ri 1 + V(
-

i

8

Ho = E

i

and

H1 A-
iij

and

(2.3)

(2.4)1i

with

(2.5)
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the potential function of particular interest in atomic struc-

ture theory is the Coulomb potential (in atomic units)

z
V (r ) Z= -r. (2.7)

with z equal to the nuclear charge. Equation (2.6) then

becomes Schrodinger's equation for the one electron atom (hydro-

genic) and has the great advantage of being both separable and exactly

soluble, that is, exact analytic solutions for the eigenfunctions

can be found. The eigenfunctions of H are well known

*(n,k,m
z
) = R n(r)Yim(e,0) (2.8)

which is just the product of a radial function

Pnk(r)
REn(r) = r (2.9)na~ (r ) = r

and a spherical harmonic YQm(0,A). The radial function is

Pn (r)
R (r) = (2.10)

with

(n - -- 1);z 1/2 +1 X 2Y+1
_--3 ( )Ln+P (X) (2.11)

Pi(r) n2 [(n + )] 1/2 x+lexp ( 2L+1
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The quantity L +2 (X) is the Laguerre polynomial with

X = 2zr (2.12)
n

The function Ph (r) is normalized in the sense that

(r)dr = 1 (2.13)

0

and the spherical harmonics Ykm(8,~) are normalized in the sense

that

/jIYm (e8, ) 2dQ = 1 (2.14)

The total wavefunction ~(nZm2 ) is normalized and also

orthogonal

*(ndue to the ortho')(nmnoral)dV 
=

nproperties on6f the Laguerre polynomials

due to the orthonormal properties of the Laguerre polynomials

and the spherical harmonics. The eigenfunctions of the one

electron atom are designated by the principal quantum number n,

the orbital angular momentum 2, and the projection of 2 on

the z-axis, mi. Thus the eigenfunctions are mutual eigenfunctions

of the three commuting operators Ho, L , and L
z

with eigen-

values Eo, 2(2 + 1), and m i respectively.
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When more than one electron is present the potential function

in H
°

is no longer the Coulomb potential due to the presence of

the other electrons,however the separable form of equation (2.8)

is still appropriate. The term Hi, which includes the interaction

between the electron of interest and all the other electrons in

the atom,is no longer zero so that Schrodinger's equation,

including H1, is neither separable nor solvable in closed ana-

lytical form. Therefore,approximation methods must be employed

to obtain eigenfunctions of Schrodinger's equation. These

approximation methods are based on the central-field model for

the atom. The central-field model was developed concurrently

with wave mechanics and quantum mechanics. The development

started.with Bohr's first proposal (1922) for the explanation of

the periodic table and was supplemented by the discovery of the

electron spin by Uhlenbeck and Goudsmit (1925, 1926) and by the

exclusion principle of Pauli (1926). The method was completed

with Hartree's proposal (1928) of the method of the self consis-

tent field and with the so-called Hartree-Fock method (V. Fock,

1930a, 1930b, Slater 1930).

Three postulates are required for the central-field model.

The first of these follows from wave mechanics and is merely an

approximation method of solving Schrodinger's equation for the

many body problems of N electrons moving about a nucleus of

charge z units. The other two postulates are extensions of the

wave mechanical principles and are the postulates of the electron
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spin and of the exclusion principle. The latter two postulates

are required since the electrons are Fermions (spin of 1/2) and

are therefore represented by anti-symmetric wavefunctions which

require that no two electrons occupy the same state.

The simple central-field model in fact,consists of replacing

the instantaneous action of all the electrons of an atom on one

of their number by the much simpler problem in which each electron

is assumed to be acted on by the average charge distribution of

each of the other electrons. This average charge density is

obtained by taking the quantity ~*~ for the corresponding wave-

function, summing over all the electrons in the atom and taking

a spherical average. The potential, arising from this spherically

averaged charge distribution and the nucleus, is itself spheri-

cally symmetric or, in other words, a central field. Eigen-

functions of Ho may then be found since V(r) is now a central

field. These eigenfunctions which represent single electrons

moving in the central field are very nearly those obtained for the

one electron atom [i.e., p = Rnz(r)YQm(6,~)] since the angular

dependence will be the same. The radial part of the wavefunction,

however, may be different. The eigenfunctions of Ho therefore

represent the individual electrons and designates each with a

particular n, Q, and mj. By specifying n and 2 for each

electron, a configuration is denoted in this approximation. The

simplest wavefunction which is an eigenfunction of H is a
o

product function of the one electron wavefunctions. This product
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function will have a well defined parity with the property

('p ). = T (2.16)

where the parity operator P commutes with H . Equation (2.16)

shows that the only eigenvalues of P are + 1 with the eigen-

function -1 called odd parity and + 1 even parity. For the simple

product function the parity is given by

+ =(_ E i
?= (-1) i(2.17)

and is determined by the orbital angular momentum of the electron

obtained from the central field approximation. The one electron

wavefunctions must also contain a function of spin since the elec-

tron spin is postulated in the central-field approximation. The

spin function is taken as an eigenfunction of the operators S

and S with eigenvalues 3/4 [ = s(s + 1)] and m ,

respectively. The product of the one electron wavefunction and

the spin function are designated spin-orbitals and are represented

by

u(nRmQSms) -= W(n mt) X (s) (2.18)

+ 1
where X (s) are the spin functions corresponding to ma = + 2.

The operators S2 and Sz commute with Ho, L2, L and P since
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they operate in a different space so that the spin orbitals are

eigenfunctions of these operators.

The coupling of the various orbital and spin angular momenta

may be carried out in the Russel-Saunders or LS coupling scheme.

In this scheme the individual orbital angular momenta of the

electrons is added vectorally to give a total orbital angular

momentum

+L = E li. (2.19)

i

The individual spins add in the same manner to give a resultant

spin

= E (2.20)
i

The specification of L and S denotes a term in a given

configuration.

The terms H1 and H2 in the Hamiltonian are treated as

perturbations with the assumption that they make small corrections

to the total energy of the atomic state. This is not always the

case but for many atoms (especially the ligher ones) it is a very

good approximation. The operator H
1
commutes with L and S

122
and with J where

J = L + S (2.21)
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is the total angular momentum and the operator J2 has the eigen-

values j(j + 1). The operator H1 also commutes with the parity

operator and therefore matrix elements of H1 between functions

of the same J and parity will be non-zero. Thus the interelectron

Coulomb repulsion will mix the single particle product functions

(i.e. spin orbitals) and the concept of a configuration loses its

identity. The existence of these non-zero matrix elements of H1

between levels in different configurations is referred to as con-

figuration mixing. While the effect of the operator H1 can

often be ignored, in many practical cases it can lead to rather

interesting phenomena. The most interesting case and one which

is of interest in this investigation is when one of the configura-

tions contains continuum states. The mixing of bound and con-

tinuum states leads to the phenomena of autoionization as well as

its inverse. These processes involve doubly excited states and

will be discussed in detail along with the other atomic processes

in Chapter III.

The spin angular momentum of the electron may interact with

the orbital angular momentum so that the operator H
2

is non-

zero even for hydrogenic atoms. The one electron spin-orbitals

u(nkmQ ms) are not eigenfunctions of H2 since H2 does not

commute with Lz or Sz. The operator H2 does commute with J

and Jz but not with L and S . The eigenfunctions of H
2
should

2therefore also be eigenfunctions of the operators H, j2 and Jz
therefore also be eigenfunctions of the operators Ho, J and iZ
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Such eigenfunctions may be constructed from the one electron spin

orbitals by using the Clebsh-Fordon coefficients to couple L and

S (Shore and Menzel, 1968)

(2.22)u(nksjmj) = L C(Zsj; mimsmj)u(nkmksms) (2.22)

where C(Zsj; mQmsmj) is the Clebsh-Gordon or vector coupling

coefficient.

Matrix elements of the spin orbit interaction operator H2 are

tabulated by Condon and Shortley (1938) for various configurations.

Since H
2

does not commute with L or S they are no longer

"good" quantum numbers. However, the total angular momentum J

is a "good" quantum number as the matrix elements of H
2
are dia-

gonal in J (i.e,,H2 and J commute). For the levels considered

in this investigation the effects of configuration interaction

and spin-orbit interaction were found to contribute very small

corrections so that the levels are labeled in the LS notation.

It has been pointed out that the one electron eigenfunctions

in the central-field model differ from the hydrogenic functions

only in that the radial dependence is different. These radial

functions must be determined if the eigenfunction is to be a

reasonable approximation to the true eigenfunction. A most useful

procedure which has been employed with a large degree of success

is the variational principle of wave mechanics.
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B. The Variational Method

The variational method assumes that a function W exists

which is variable at will subject only to the condition that it is

always normalized. The average value of the Hamiltonian operation

H for this function is

H avg fW*HW dv (2.23)

where the asterisk denotes the complex conjugate. The function

W is then allowed to vary to W + 6W where both W and 6W are

functions of the same variables and 6W is small relative to W.

An arbitrary change in W will in general destroy its normalization

so that equation (2.23) is not correct for an unnormalized function.

In the general case where W is an unnormalized function the

corresponding normalized function is

(fW~ dv) 1/2 (2.24)

Equation (2-23) should then be more properly written

fw*HW dv
H (2. 25)
avg W*W dv

The function W is then replaced by W + 6W with the corres-

ponding value of Havg being Havg + 6Havg. If terms of second

and higher order are discarded, and expression for 6H may be
avg
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obtained

HW* + SW*)H(W + 6W)dv
6H = H
avg f(W* + 6W*)(W + 6W)dv avg

- f6W*HW dv +JW*H6W dv - Havg( W*W dv + w*6w d

+ higher order terms (2.26)

It has been assumed that the unvaried function W was norma-

lized. The variational principle requires that H be stationary
avg

(i.e., 6H = 0) so that H is a minimum for the function W.
avg avg

To accomplish this,use is made of the fact that H is Hermitian,

(Slater 1960) which implies that

fW*H6W dv = WH*W* dv =(W*HW d (2.27)

Equation (2.26)'may then be written

JW*[H - Havg]W dv + Complex conjugate = 0 (2.28)

which can be satisfied if

fW*[H - Havg]W dv = 0 (2.29)
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since this makes the complex conjugate also equal to zero. Now

6W* is the variation of an arbitrary function so that equation

(2.29) is satisfied for all values of the coordinates only if

[H - Havg ]W = 0 everywhere (2. 30)

However, this means that

HW = H W (2.31)
avg

which is just Schrodinger's equation since the eigenvalue E of

Schrodinger's equation is just Havg. Imposition of the variationalavg

principle leads therefore to functions W which are solutions of

Schrodinger's equation.

A more convenient way of applying the variational principle is

the method of undetermined multipliers whereby the variation of an

integral may be made equal to zero subject to the auxiliary

condition that another integral (or integrals) remain constant. Thus

it is required to vary the function W so as to make H
avg

stationary,subject to the condition that the normalization integral

remains constant and equal to unity. The method of undetermined

multipliers is to set up a linear combination of all the integrals

concerned with undetermined multipliers and set the variation of

this linear combination equal to zero. For the general case of k

auxiliary conditions, and denoting the integrals by I
o
, I1, . . .

I
k
, the variation of the linear combination is
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6(1° + X I1 + 2I2 + . . . + kI
k
) = (2.32)

where the A's are constants to be determined. In the present

case the variation is

6[Havg + A f*W dv] =0 (2.33)

It has already been shown that 6H may be written as the
avg

sum of a quantity and its complex conjugate and the same procedure

may be applied to

6fw*W dv

Then equation (2.33) may be rewritten as

/6W*[H + A]W dv + Complex conjugate = 0 (2.34)

The variational principle then demands that

HW = -AW (2. 35)

which is just Schrodinger's equation with the undetermined

multiplier equal to -Havg. It is now desired to consider the

application of the variational principle to the problem of finding

approximate solutions of Schrodinger's equation.
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C. The Self-Consistent Field Method and Hartree's Equations

The self-consistent field method (Hartree, 1928) is an extension

of the central-field approximation. The method assumes a total

wavefunction for the N electron atom which is just a product of

the one electron wavefunctions

T(r le~
1 .... YNNO

N
) = (nl2lml r 81e

1
) . . . (nN)mtNrNN

)(1 1N NON) 1 1 2.1 1 1¢1) ~ (n * N NeNON)

(2.36)

which were discussed in the central-field approximation. This wave-

function, which is of the form of that given by equation (2.8) but

with the radial function initially arbitrary, is used to determine

charge densities and potentials. These potentials are then

employed to find new solutions to Schrodinger's equation which

give new wavefunctions, which are usually not the ones initially

assumed. In fact, Hartree (1928) found that he could use these

new wavefunctions as starting functions and repeat the above

procedure. This iterative process was continued until self-

consistency is achieved, that is, the final wavefunctions agree

(within specified limits) with the initial functions. Fortunately

the process converged after a few cycles producing wavefunctions

which were self consistent to a very good approximation.

Hartree's equations however may be obtained by applying the

variational principle to the wavefunction [equation (2.36)] and
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taking the undetermined radial functions as the quantities which

may vary. The first step in applying the variational principle to

Hartree's wavefunction is to compute the average value of the

Hamiltonian for the function. If the spin-orbit operator H2 is

neglected (consistent with the LS coupling approximation) the

Hamiltonian is

H Ho H1 (2.37)

and

H avg =HoiVdv + ff jPH1 i~jdvidvj (2.38)

i joi 

The quantity H is now varied subject to the condition that the
avg

normalization integral remain equal ,to unity. Since only the

radial part of the function is to be varied and since the spherical

harmonics are orthonormal, equation (2.38) is just

Hav n )Ho ni i (ri)dr
io ii

+ E f JPniri(ri)P n (rj )Hi Pn (ri)Pn ,(r )dridrj(2.39)
j+ i oJ 1i i n J (

and where <HiJ> = l/r> where r> is the larger of ri and rj.

Employing the undetermined multipliers the variational principle

requires
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6 Havg +Xn 6 ni (r )dri = 0 (2.40)

The variation of H is then computed. The variation is
avg

carried out with respect to a single radial function since if H

is to be a minimum it must be a minimum with respect to each

function. The variation of the first term of Hi is
avg

nik i o ni i i nii _ o ni i ri + ni o
i

o ni idri
0 0 i 0 ii

(2.-41)

=2 f6P H 1 P dr (2.42)
ni" o ni i i(

0 ii

since the variation may be written as a sum of a quantity plus its

complex conjugate and the radial functions (being a function of r

only) are real so that the function is equal to its complex

conjugate. The variation of the second term is

co co

6 n P P <H i>Pi P ie
0 ni nn n.9... j

=2 Jff Pnii(ri)P (rii )Pi) <2 1 >dr d (2.43)

00 ii j

and the variation
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Sfir i dr=i 2 6Pii iid (2.44)

0 0

is also required. These values may now be substituted into equation

(2.40) and setting

ni ni9, (2.45)
"i-i ni i

the result

2 JSPii (ri) + f<
i
j p2 (r )dr -Cni Pni i(ri)

0 jo1

dr
i

- 0 (2.46)

is obtained. Since the variation 6Pni(r) is arbitrary

equation (2.46) is only true for all values of r if

(2.47)

[ <H1 1 nj jr)dr P n (ri = i Pn (r )

jol 0 EniiPnii(r
i

which is just the fundamental equation of the Hartree method.

Since the P n (ri) are one of the factors of the spin orbitals

[equation (2.18)] and since the variation does not involve either

the spin or the spherical harmonics both of which are orthonormal,

equation (2.47) is also true for these spin orbitals, thus:
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Hi +E fH 2>U (2)u (2)drj - ui(2)Hl'2ui(2)dri ui(1) = iui(1)

(2.48)

where the summation has been extended over all the j's, the

term j = i has been subtracted out,and the numbers 1 and 2 are

used to denote the electron positions. Equation (2.48) is the

wave equation for an electron moving in a spherical potential pro-

duced by the nuclear charge of z units and by the spherically

averaged charge distribution of all the other electrons. This is

just the set of equations which would be derived from Hartree's

(1928) original postulate of the self-consistent field.

D. Hartree-Fock Equations

The application of the variational principle to derive Hartree's

equations is informative in showing that the equations are not

simply the results of Hartree's intuition. However, the wavefunction

employed in the Hartree procedure does not meet the necessary

requirements of wavefunctions which represent Fermions, since the

simple product of one-electron functions does not satisfy the anti-

symmetric principle of Dirac (1926). This principle, which is

closely connected with Pauli's exclusion principle, relates to the

symmetry properties of many electron wavefunctions when the

coordinates of two of the electrons are interchanged. The

simplest function which will satisfy this anti-symmetry principle

is a determinantal function with more complicated examples being

linear combinations of determinantal functions. The simplest case
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to deal with is a wavefunction consisting of a single determinant

which has been shown to apply rigorously to filled shells such as

are found in the inert gases (Slater, 1960), and often will be a

suitable approximation in other cases. For unfilled shells the

potential is not truly spherically symmetric so that a spherical

averaging process must be carried out. The single determinant

representing a spherically symmetric potential is therefore only

an approximation for unfilled shells. The anti-symmetric wave-

function written in the form of a single determinant (for simplicity)

is

ul(l) ul(2) · . ul(N)

u2 (1) u2 (2) . . . u
2

( N )

(N) ........... (2.49)

uN(1) uN(2) · . . uN(N)

The factor (N!)
- 1

/2 is just a normalization factor and the required

anti-symmetry property follows from the theorem that if two rows or

two columns of a determinant are interchanged the determinant

changes sign and the interchange of the coordinates and spin of

two electrons involves the interchange of the corresponding

columns in the determinant. Each of the functions ui is assumed

to be a product of a function of coordinates and a function X
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or X of spin and are called spin-orbitals. Each spin-orbital

corresponds to a definite value of m . The function X+

1 1
corresponds to ms = 2 (spin-up) and X to ms = (spin down).

All of the spatial functions corresponding to m = 1 are assumed
s 2

to be orthogonal to each other and all those corresponding to

m = -- are assumed orthogonal to each other. It is not necessary
s 2

to assume that those spatial functions corresponding to mI 
s 2

are orthogonal to those corresponding to m = since the spin
s 2

functions guarantee the orthogonality of spin orbitals with

different values of m . Furthermore, all spatial functions are

assumed to be normalized. These assumptions are sufficient to

insure that the determinantal wavefunction(with the same results

applicable to sums of determinants)is normalized and that the

diagonal matrix components of the Hamiltonian will be given by the

sum of the expressions representing the diagonal components of

one-electron and two-electron operators (Slater 1960).

The Hartree-Fock method, which will be outlined below, consists

of applying the variational principle to the diagonal matrix

elements of the Hamiltonian with the subsidiary conditions that the

spin-orbitals remain normalized and that any two spin-orbitals

associated with the same ms are orthogonal. The spin-orbitals

are varied in order to minimize the average energy (as in the

previous section) and since the proper expression for the energy

is minimized it is expected that this method would be more accurate

than the Hartree method which employs -an improper wavefunction and

hence minimizes an incorrect average energy expression.
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The Hamiltonian for the N electron atom is given by equation

(2.1). It is not required that z = N so that ions as well as

atoms may be treated. The terminology defined by equations (2.3),

(2.4), and (2.5) is employed with the Hij s operating on the

coordinates of only one electron and the Hi'Js::each operates on

the coordinates of two electrons. With this notation the diagonal

matrix component of the Hamiltonian is written in the form

(neglecting H2)

(H) avg = EZ ui(1)Houi(l)dv1 + *)u(2)H2 Xavgi(1 uj (
i i,j

in pairs

[ui(l)uj(2 ) - 6m m ui(2)u
j
(1)]dvldv

2
(2.50)

The integration over dv
i

and dv
2

is over spatial coordinates

only and the delta function arises because the exchange integral is

zero if m # ms (due to summation over the spins). The numbers
i j

1 and 2 are dummy indices of integration. The Hartree-Fock

equations may now be derived by varying the u
i

[actually in

practice,even for unclosed shells,this is just a variation of

Rn ,(r)] in equation (2.50) to minimize the average energy with the

conditions that the ui's are all normalized and any two ui's

associated with the same m
s

are orthogonal, that is, the varia-

tional principle is used to find the ui's. These subsidiary

conditions are handled by the method of undetermined multipliers.
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In the variation of equation (2.50) it is required that

6 (H)avg + E ii Jui(1)ui(l)dvl + 
i i,j

pair

6m m [sj ij ) x
si Lj

uj (l)dv1 + Xji ju(1)ui(1)dv
1
I = 0 (2.51)

where the sum over i, j is carried and for each pair of electrons

and where it has been assumed that

j i 
=

Xij
(2.52)

so that the last two terms are complex conjugates of each other.

This procedure gives the correct number of independent multipliers,

that is, one for each subsidiary condition. Then for any variation,

which preserves normalization

6 fu(l)ui(l)dvl = 0 (2.53)

for each i and if the variation preserves orthogonality

6 fu(1)uj (1)dv1 = 0 (2. 54)

for each pair i and j. This procedure will give

6() =vg avg
(2. 55)
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which is just what is required. The X ii's and Aijs, where
ii ij

j 0 i are the undetermined multipliers, with i and j running

from 1 to N or over all spin-orbitals of the atom. For a closed-

shell atom each spatial orbital will appear twice, once associated

with the spin function X and once with X-. These will correspond

to different values of the index i or j. A particular u
i

in

equation (2.50) may now be varied and if (H) is really a
avg

minimum it will be a minimum as far as the variation of each ui

is concerned. The quantity 6(H) is given by
avg

6(H)avg = 6 ui(l)Houi(1)dv1 +fui(l)HO6ui(l)dvl

~f+ E |ui(l)u;(2)Hl' [ui(l)uj (2) - 6ms msui(2)uj (1)]dvdv2

+fE f *u(1)u*(2)H11 ,2[6u2 (1)uj (2) - 6msi msj6ui( )uj ()]dvdv2

(2.56)

which is just (Slater 1960)

6 (H)avg ui(l){Houi(1) + u(2)H'2[u()uj(2)

- 6m ms ui(2)uj (l)]dv2)dv
1
+ Complex conjugate

(2.57)

Using equation (2.57) in place of 6(H) in equation (2.51) the
avg

variational principle becomes
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6ui(1){Houi( 1) + i( (2) - ui(2)uj(1)]dv
2

+ Xiiui(1) + 6m8im Xijuj(l)}dvl + Complex conjugate = 0
ji

(2.58)

The left-hand side of equation (2.58) will be zero if the first

term is zero. Since the second term is the complex conjugate of

the first it will also be zero. The variation 6ui(l) is arbi-

trary and therefore if the first term is to be equal to zero the

expression in braces must vanish

Hui() <2)H
1

[ui(1)uj(2) - ui(2)u(1)]dv2

+ iiui() + 6m m Xiu j(1) =0 (2..59)
jai i sj

Combining the last two terms and transposing the resultant term to

the right-hand side gives the Hartree-Fock equations

Hi(1(2)+ [ui(l)uj(2) - ui(2 )uj(l)]d 2

= _ EXijuj(l) (2. 60)

These Hartree-Fock equations are very similar to those obtained by

the simple Hartree procedure (disregarding the spherical averaging

procedure) [equation (2.48)] and in fact there are
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only two types of differences in the equations. The first diff-

erence is in the right-hand side of equation (2.60). The simple

Hartree procedure results in only one term i = j and with Aii

replaced by si. This discrepancy can be eliminated(for the case

of filled shells only)by making a unitary transformation of the

ui's (Slater, 1960). Such a transformation leaves the determinan-

tal function unchanged since it follows from the theory of

determinants that a determinant whose rows or columns are found

from those of another determinant by a unitary transformation

is identical to the original determinant except for a constant

multiplicative factor whose absolute value is unity. The parameter

Aii (or £i ) has been shown (Koopmans, 1933) to represent the

energy required to remove the i thelectron from the atom, assuming

that the orbitals for the ion are the same as for the atom (i.e.,

frozen core approximation). The second difference is in the second

term of the summation over j on the left-hand side of equation

(2.60). Of these terms

E [fU;(2)H1 ui(2)dv2 ] u(2.61)

only the j = i term is present in equation (2.48). These terms

[equation (2.61)] are the exchange terms and are the only real

difference between the Hartree-Fock and the Hartree equations. It

is therefore necessary to inquire into the physical meaning of

these exchange terms. Equation (2.60) may be rewritten as
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H1ui(1) + J (2)H1 2i j j (2)

j j

H1 2 ui(2)dv
2

uj (1) = - ms i sij (1) (2. 62)

If equation (2.62) is multiplied and divided by ui(l)ui(l) it

takes the form

H Ui(L) + [ U(2)H121 Uj(2)dv2 Ui(l)

m i* i

6mm mj ui(1)uj(2)H1' uj(l)ui(2)dv2

u.i(l) =- 6msim m ijuj (l)
u_ i(l)ui(l) JE Si S i

(2.63)

Equation (2.63) shows that ui is a solution of Schr6dinger's

equation with a Hamiltonian operator which is just the sum of the

kinetic energy, the potential energy in the field of the nucleus

(HI term), the potential energy in the field of N electrons

distributed in the orbitals occupied in the determinantal wave-

function (first term involving H'1 2 ) minus a correction term

(second term involving H 
1

2 ). The correction term involves the

exchange integrals and it is this term which requires inter-

pretation. Slater (1960) points out that the correction term may

be regarded as representing the potential energy, at position
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1 of the electron in question, of a charge distribution at point 2

of magnitude

ui(l)u (2)u (l)u. (2)
6m m (2.64)
6msim u Ui(l)ui(l)j Ji i u Mu (1)

This charge density is called the exchange charge density due to

its connection with the exchange terms in equation (2.63). Slater

(1960) proves three properties of the exchange charge density.

First, its total amount is one electronic charge (unity in atomic

units) if ui is one of the occupied spin-orbitals but is zero if

u
i

is an unoccupied spin-orbital. The proof is straightforward

requiring the integration of equation (2.64) over dv2. Since the

u. 's and uj's are orthogonal all terms in the summation are zero

except i = j which is unity if ui is an occupied spin-orbital.

If ui is an unoccupied spin-orbital there is no i = j term and

the summation is zero.

The second property of the exchange charge density is that it

consists of electronic charge having the same spin as the spin-

orbital ui whose wavefunction is being determined. This follows

immediately from the delta function 6ms m . The third property
ii

is that if point 2 is identical with point 1, then the exchange

charge density reduces to

6m
s

ms uj(l)uj(1) (2.65)
Si Sij
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or the total density of all electrons of the same spin as the ith

at position 1. These three properties allow the general nature of

the exchange charge density and its physical significance to be

determined.

Thus, the Hartree-Fock equations, as written in equation (2.63),

show that the potential energy of the field in which the electron

moves is the potential due to the nuclei plus the potential from

all electrons of spin opposite to that of the electron under con-

sideration, plus the potential from a charge distribution of

electrons of the same spin as the electron under consideration and

equal to the total charge of these electrons,minus the exchange

charge density. The charge distribution of electrons of the same

spin as the one considered adds up to one less than the total

number of electrons of this spin for an occupied orbital and it

includes all the electrons of that spin for an unoccupied orbital.

For the occupied orbitals, the net charge density of electrons

having the same spin as the electron under consideration, when

corrected for the exchange charge, goes to zero at point 1 where

the electron under consideration is located since when point 2

coincides with point 1 the exchange charge density cancels the

total density of all electrons of this same spin. In other words

the electron tends to keep other electrons, having the same spin

as it, away. Thus the effect of the exchange terms is to remove

electronic charge from the immediate vicinity of the electron

whose wave function is being considered. This removal is more
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effective with the Hartree-Fock method than with Hartree's

original method. This has the effect of lowering the potential

energy in the Hartree-Fock method so that it is expected that the

one-electron energy parameter ei = Aii would be lower in the

Hartree-Fock method than the Hartree method. This lowering of

the potential energy may also have an appreciable effect on the

wavefunction. Such an effect is observed in that the Hartree-

Fock equations, as compared to the Hartree equations, concentrate

the charge density more at small values of r (Slater, 1960).

Equation (2.60) has N solutions representing the N spin-

orbitals occupied in the determinantal wavefunction which repre-

sents the state of the N electron atom. An infinite number of

solutions to equation (2.60) can be found which represent the

unoccupied spin-orbitals. It has also been shown (Slater, 1960)

that all solutions of the Hartree-Fock equations are orthogonal

and when normalized they form a complete set of orthogonal spin-

orbitals in terms of which an arbitrary function of coordinates

and spin may be expanded. The above results (except for the

unitary transformation for the Xij's) do not depend on the fact

that a central field problem (or a closed shells) is being

considered but only on the fact that a determinantal wavefunction

is being used. Energies are found in this approximation by solving

equation (2.60) numerically and calculating H
avg

It was first pointed out by D9lbruck (1930) and later proven

more explicitly by Roothaan (1951) using group theory, that for

an atom which has all of its electrons in closed (completely
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filled) shells the Hartree-Fock one-electron orbitals ui must

have the form of solutions of a central-field problem so a single

determinant is appropriate. For this case Hartree's assumption

of a spherical average is not necessary as the spherical behavior

necessary for using the solution u. comes about automatically.

For nonclosed shells this is not the case and a spherically

averaging process must be carried out in order to get one electron

orbitals of the central field type. This procedure has been

carried out (Brown, 1933; Hartree and Hartree, 1935; see Slater,

1960, for a discussion of this point) and is shown to be the

result of Just the variation of the radial part of the one electron

orbitals (exactly as outlined in the above discussion). The two-

electron integrals are however much more complicated for unfilled

shells (and when a spherical average is not performed as in the

simple Hartree case) (see Slater 1960 p. 310). Thus the best solu-

tions of the spherically symmetric problem are obtained even when it

is not actually spherically symmetric (i.e., the u.'s are not really

appropriate). This is however, a good approximation since in most

cases the potential is almost spherically symmetric. The Hartree-

Fock procedure requires a considerable amount of computational time

as each term (L and S specified) of a given configuration requires

a separate calculation and it has only been through the use of

electronic computer that other than simple problems can be handled.
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E. Calculations

The calculations of the Hartree-Fock wavefunctions for this

investigation were carried out with the Hartree-Fock computer pro-

gram developed by C. Froese (Fischer) (1965) on the C.D.C. 6600

computer at NASA's Langley Research Center, Hampton, Virginia.

This program calculates the spin-orbital functions, the total

energy of the term, as well as the radial spin-orbit interaction

parameter

Cng = Pnf(r) )P(r) dr (2.66)

where i(r) is defined in section A.

The program also employs the configuration interaction

representation which is an extension of the Hartree-Fock method.

In this representation the total wavefunction is expanded in terms

of the determinantal wavefunctions associated with more than one

configuration although for the calculations performed this repre-

sentation was not needed.

Initial estimates of the term energy, wavefunction and the

initial slope of the wavefunction were obtained from the Hartree-

Fock-Slater program of Herman and Skillman (1963) which employs

a modified Hartree-Fock.procedure with the exchange potentials

for different occupied orbitals replaced by a universal exchange

potential formed by using an exchange charge density taken from
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the case of a free-electron gas. The exchange correction is then

written as a constant multiplied by the cube root of the change

density and therefore eliminates the necessity of computing an

integral from the exchange charge density (Slater, 1951). The

program also employs a single determinantal wavefunction built up

of the one-electron spin orbitals. Furthermore, multiplet structure

is ignored so that the energy obtained from the wavefunction is

just an average energy of the configuration. These results,

however, do make very good initial estimates for the more compli-

cated Hartree-Fock program.

The wavefunctions obtained from the Hartree-Fock program were

punched onto data cards and were employed to calculate the transi-

tion probabilities of the doubly excited states of interest.

The transition probability between an upper level with total angular

momentum J and a lower level with total angular momentum 1' is

given by (Garstang, 1969)

2.677 x 109 (EJJ,)3S -

A(J + J') = + 1 sec (2. 67)

where EJ, is the energy difference of the levels in Rydbergs,

S is the absolute line strength for electric dipole radiation in

atomic units

sl/2(SLJ - S'L'J') = [(2J + 1)(2J' + l)]l/2W(L3L'J':Sl)(L lr(1) IL')6SS,

(2.68)
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for a transition from the level SLJ to the level S'L'J'. W

is a Racah coefficient and the matrix element of the first order

tensor r(1) is in reduced form. The reduced matrix element of

the first order tensor r(1 ) may be evaluated in terms of the

one-electron wavefunctions (Shore and Menzel, 1965).

M , ,k +1-kl-L 1/2 1/2
( 1 22L Ir()I l )1Z2L) = (-1) (2L + 1)1 / 2 (2L' + 1) 26 2P2

(n)/(rn {i t n-1) x W(o1Lf1L ;u21)(v1er (1)e l) (2.69)

where n is the number of equivalent electrons (n = 1 for no

equivalent electrons) and (kn{|l1 n-1) is the coefficient of frac-

tional parentage. For two equivalent electrons the coefficient of

fractional parentage is unity. This is the only possibility for the

case being considered (two electron ions). The reduced one-electron

matrix element has only two nonzero values (Garstang, 1969)

( Ir(l) I+ ) - [( + + 1) + (2 + 1)(2 + 3)11/20

(2.70)

and

(kIIr(1)Ik - 1) = + [<(2k - l)(2 + 1) /2 (2.71)
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with

(4 2 1)/2 rPn(r)P,,(r')dr (2.72)

where k is the greater of the two V's involved in the integral.

The Hartree-Fock wavefunctions were employed to numerically evaluate

the integral in equation (2.72) using a computer program developed

by Shamey (1970). The absorption oscillator strength f(J' - J)

is given in terms of the absolute line strength by (Aller, 1963)

f(J',J) = 303.7 S(SLJ - S'L'J') (2.73)

where X is the wavelength in Angstron unit. The quantity g

(g = 2J' + 1) is the statistical weight of the lower state and

g f(J:J) is often the quantity tabulated.

The numerical calculations indicate that the three ions of

interest are in good LS coupling since the spin-orbit splitting

of the terms was very small compared to the separation of the

terms.

The wavefunctions and total energies of the ground state,

singly excited and doubly excited states of the two-electron ions,

boron IV, carbon V, and nitrogen VI were calculated with the

Hartree-Fock program and the energy difference between terms for

which electron dipole transitions were allowed was converted

to wavelengths. Terms rather than levels were used since all levels
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in a given term were assigned the same energy. In order to deter-

mine an order of magnitude error involved in the calculated wave-

lengths the energies of the singly excited states and ground state

were used to calculate wavelengths of observed transitions in the

two-electron ions of interest. These calculated values are compared

with the observed values in table II.1. The observed values are

taken from the listing of Kelly (1968). The calculated wave-

lengths are generally in very good agreement (< 0.5 percent error)

with the observed values with the exception of transitions having

lsnd 1D as an upper term where the error is much larger (up to

about 3 percent). The calculated wavelengths were in sufficiently

good agreement with the observed values that including the effects

of configuration interaction would not improve the agreement

sufficiently to justify the rather large amount of labor involved.

Wavelengths of electric dipole transition between the doubly excited

and singly excited terms were then calculated in the above manner.

The transition, wavelength, calculated absolute f value, and

relative f value in the multiplet, are listed in table II.2.

The wavelength, absolute f value, and relative f value for the

hydrogen-like and helium-like resonance lines of each ion are also

listed. While the calculated energy difference of the various

terms of the singly excited states agrees rather well with the

observed values, this is not the case for the oscillator strengths

and resulting transition probabilities. The transition
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probabilities for the helium-like resonance line is larger by a

factor of 1.6 for boron IV,up to a factor of 7 for nitrogen VI when

compared with the transition probabilities of Dalgarno and

Parkinson (1967). These authors obtained oscillator strengths

for the resonance transition of helium-like ion by expanding the

electric dipole matrix elements connecting the ls2 iS and ls2p 1p

states in inverse powers of the ionic charge Z. By comparing

their method with the Hartree-Fock approximation they find that

the matrix element which they obtain differs from the Hartree-

Fock approximation by one term which they regard as a virtual

dipole excitation of the passive ls electron plus a distortion

due to the dynamic polarization of the ls orbital at the is -

2p transition frequency. They further show the necessary correc-

tion to the Hartree-Fock approximation consists of mixing the

(ls2) S and (apnp) S configurations with ap representing the

polarized is orbital. Consequently, it is expected that the

calculated transition probabilities for the doubly excited states

are too large and are only accurate to an order of magnitude.
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Transition

ls2 1S0 ls2p P1

2 1o
ls2 S - ls3p P1

ls2 1S0 - 14p 1p

3 0s2s 3S1 - ls3p P2,1,0

ls2s 3S1 - ls4p P2,1,0

ls2p 3 P1 - ls4d 3D2

ls2p P1 - ls3d 1D
2

ls2p I -_ ls4d D2

Table II.1

0
X, Calculated A

40.523

35.060

33.483

227.423

173.468

187.056

258.954

192.475

0 o
X, Observed A AX A

40.270 +0.253

34.973 +0.087

33.426 +0.057

227.220 +0.203

173.270 +0.198

186.720 +0.354

267.260 -8.306

197.020 -4.845
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CHAPTER III

Atomic Processes and Plasma Models

A. Ionization Processes and Rate Equations

For many astrophysical as well as laboratory plasmas, thermody-

namic equilibrium is never achieved and, consequently, an analysis

of the emitted radiation requires a knowledge of the rates at which

the various atomic processes take place. The rates of ionization

and recombination as well as the population and depopulation of the

various atomic states are of importance.

Let XZ-l(p) and XZ(i) denote two successive stages of

ionization of an atom X with number density nZ-l(p) and nZ(i)

-3per cm . The superscript Z - 1, Z represents the ionic charge

of the atom and the ionization potential of the pth state of XZ- 1

2
is denoted by Ip(Ip = - EH for hydrogenic ions). The letters

P
p or i represent an arbitrary level of the atom with statis-

tical weight g(p), g(i). Free electrons e, having number density

-3
n cm are also present in the plasma and a radiation field of

intensity I(v) at the frequency V may also be present. The

reversible process

X- (p)+ X (i) + e (3.1)

with the left to right process ionization and the right to left

processes recombination may now be considered. Ionization by elec-

tron collisions
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XZ -
l(p) + XZ(i) + e + e (3.2)

has as its inverse three body recombinations. If K(p,c) is the

rate coefficient for collisional ionization then the rate at which

ionization takes place is

nen (p)K(p,c)cm sec (3.3)

and the rate at which three body recombination takes place is

n
2
nZ(i)K(c,p)cm sec-1 (3.4)
e

The rate coefficient K(p,c) has been evaluated by Jefferies

(1968) using an expression due to Fowler (1955), a Maxwellian

velocity distribution for the free electrons and a dipole approxi-

mation cross section for the process derived by Seaton (1962).

Those approximations, although quite crude, will be sufficient

for the investigation considered here. He obtains the relation

(in cgs units)

Kp,'1 11 A(P )T/2

K(p,c) - 1.55 x 103 exp (-Ip/kTe)cm sec (3,5)
p

where A(p) is the photoionization absorption cross section at

threshold of the level p, gi is a scaling factor whose value

depends on the charge of the atom (gi = 0.3 for Z - 1 > 2) and

T is the electron temperature in OK.
e
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The rate coefficient for three body recombination K(c,p) is

related to the rate coefficient for collisional ionization K(p,c)

by the relationship (Jefferies, 1968)

K(c,p) = 2.06 x 10 -16 (p3/2 exp (-Ip/kTe)cm sec (3.6)
UZ(Te)Te3/2 p e

where UZ(Te) is the partition function of the atom XZ and the

free electrons have a Maxwellian velocity distribution. Because of

the dependence of I on p2 and the statistical weight g(p),
P

K(c,p) may become very large near the series limit. The inverse

temperature dependence will cause K(c,p) to decrease with increas-

ing temperature, so that, for recombination into the first few

excited levels of an atom at very high temperature the rate co-

efficient should be small.

Photoionization may also occur with its inverse, radiative

recombination

Xz
1
(p) + hv XZ(i) + e (3.7)

where hv represents a photon of frequency v. The rate of photo-

ionization is

n (p)R(p,c)cm -3sec (3. 8)
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where the rate coefficient R(p,c) is (Jefferies 1968)

R(p,c) = 4r I(f V V)dv % sec-1 (39)
hV

v
o

The absorption coefficient ca() at the frequency v is related

to the optical depth T(V) (Cooper, 1966)

dT(v) = - a(v)dx (3.10)

where dx is an element of length along the line of sight. Plasmas

for which T(v) << 1 are called optically thin at the frequency v

while those for which T(V) > 1 are referred to as optically thick

at the frequency v. Photoionization is therefore unimportant in

optically thin plasmas as a photon will not be absorbed.

The rate at which the inverse process, radiative recombination,

into the level p occurs is

nen (i)R(c,p)cm -3sec (3.11)

The rate coefficient into a hydrogenic level p having a photo-

ionization cross section A(p) and a threshold ionization energy

I is (Seaton 1959)

R(c,p) = 3/2 exp(Ip/kTe) (h\))A(p)exp(- e )d(v)cm 3sec

c Tr (mkTe) Ip/kTe
p

(3.12)
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Radiative recombination depends on the electron temperature but its

inverse does not.

In multi-electron atoms or ions doubly excited states having

energies above the first ionization potential of the atom or ion

are possible. These doubly excited states, subject to certain

selection rules, may undergo a radiationless transition

XZ
-1 (d) X(i) + e (3.13)

where d represents the doubly excited state. This process is

known as autoionization and the selection rules are just those pre-

viously discussed for matrix elements of the operator H1 to be

non-zero, that is, the two states [right and left side of equation

(3.1)] must have the same total angular momentum J (in LS

coupling the same L and S), the same parity and the same energy

E. The rate at which autoionization occurs is

nZ- (d)Aa(d,c)cm
3
se

- 1
(3.14)

where Aa(d,c) in the autoionization transition probability. The

transition probability may often be quite high (~1013 - 1014 sec )

(Cooper 1966). The inverse process (right to left in equation (3.1))

is called inverse autoionization and occurs at a rate

nn Z(i)A (c,d)cm-3sec (3.15)
e
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The movement of the electron from the continuum to the discrete

doubly excited state leads to a transient recombination since auto-

ionization maintains a quasi-equilibrium in which the number

density of doubly excited states n Z-(d) is small. If true re-

combination is to occur the doubly excited states must become immune

to autoionization. Therefore it is necessary to discuss the pro-

cess by which excited states (either singly or doubly excited) are

formed and de-excited.

B. Bound-Bound Transitions and Rate Equations

An atom of charge Z having energy levels p,q with statistical

weights g(p), g(q), an energy separation E(p,q), absorption

oscillator strength f(p,q), and with the level p lying below q

is considered. The index q may be either a doubly-excited or a

singly excited level and p then represents either a singly excited

or unexcited level (or a lower doubly excited level) respectively.

Electrons may be excited into a higher state by electron

collisions

nZ(p) + e nZ(q) + e (3.16)

at a rate

Z -3 -1 (3.17)
nn n (p)K(p,q)cm sec (3.17)
e
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In high-temperature plasmas the excitation of ions rather than

neutral atoms is important. An expression for the excitation of

ions has been derived by Seaton (1962) in the Born approximation

K(pq) = 6.5 x 10 -
4

3 -
K(p,q) =1/2 f(p,q)exp( - E(p,q)/kT e)cmsec (3.18)

E(p,q)Te

The inverse process is collisional de-excitation and is just the

right to left process of equation (3.16). The rate at which

collisional de-excitation from the level q to the level p occurs

is

nen (q)K(q,p)cm -3sec 1 (3.19)

where the collisional de-excitation coefficient K(q,p) is related

to the excitation coefficient by (McWhirter, 1965)

K(q,p) = (-) K(p,q)exp(E(p,q)/kTe)cm3sec (3.20)
g(q)e

If a radiation field is present in the plasma, photoexcitation

will occur if the plasma is not optically thin

XZ(p) + hU + XZ(q) (3.21)

The rate at which this photoexcitation takes place is

(Jefferies, 1968)
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n (p)I(V)B(p,q)cm sec (3-22)

where I(v) is the intensity of the radiation field at the fre-

quency v and B(p,q) is the Einstein transition probability for

absorption. The inverse process of photoexcitation is radiative

de-excitation

XZ(q) + XZ(p) + hv (3.23)

and is actually two processes, spontaneous emission with a rate

nZ s~n~g~p~cm-3 -1

nZ(q)A(q,p)cm sec (3.24)

and stimulated emission with a rate

n (q)B(q,p)I(V)cm 3sec (3-25)

In practice, stimulated emission is treated as negative

absorption so that the two processes which depend on the intensity

of the radiation field are lumped together as a single process

with a single rate coefficient.

C. Doubly Excited States and Dielectronic Recombination

The two step process consisting of inverse autoionization to

form the doubly excited state followed by radiative decay of the
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doubly excited state to a singly excited state is called dielectronic

recombination and is the process of interest in this investigation

since the radiative decay of the doubly excited state in a two

electron atom will produce a photon that is of a slightly lower

energy than the corresponding transition in the one electron atom

and should therefore produce satellites to the hydrogen-like lines.

If the probability of a radiative transition from the doubly excited

state to a lower stable state is AS(d,p) then the rate at which

the doubly excited state is depopulated by this process is

n (d)A (d,p)cm sec (3-26)

The rate coefficient for dielectronic recombination is denoted

by Kd(c,p) and the rate at which dielectronic recombination occurs

is (Bates and Dalgarno, 1962)

nnZ (i)Kd (c,p) (3-27)

Figure 1 is a schematic of the various processes involved in

dielectronic recombination and is useful in determining an expression

for Kd(c,p). The processes are:

#1. Spontaneous decay - rate given by equation (3.24)

#2. Autoionization - rate given by equation (3.14)

#3. Inverse Autoionization - rate given by equation (3.15)

Equating the rate into the doubly excited state with the rate out of

the state



55

n Z-(d)[A (d,p) + Aa(d,c)] = nn ZAa(c,d) . (3.28)

The coefficient for inverse autoionization may be related to

the equilibrium value of n Z-(d) by detail balance and using

full thermodynamic equilibrium.

Thus

nZ-l(d)Aa(d,c) = nenZAa(c,d) . (3.29)

Substituting for n nZAa(c,d) in equation (3.28)

nZ (d) = nZ (d A
a

(d,c) cm- 3 (3.30)
-E (d) Aa(d,c) + AS(d,p)

The rate of stabilization of the doubly excited state is given by

equation (3.26) and nE(d) is the number density in SAHA equili-

brium (which will be discussed in the next section). Equating

equation (3.27) with equation (3.26) (i.e. setting the rate of

dielectronic recombination equal to the rate of stabilization of

the doubly excited states)an expression for the rate coefficient

is obtained

ZlA\AsA~ 3 -1
K (c,p) = n d)Asdp) cm sec (3.31)

nZ(i)ne

Z-1
1nE (d) Aa(d,c)AS(d,p) cm3Sec

n A c) + Adp)n(i)ne A (dc) + A (d,p)
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where equation

expression for

becomes (Bates

(3.30) has been substituted for n -l(d). Using the

Saha equilibrium (see the next section) the expression

and Dalgarno, 1962)

Kd(cp) = A (d,c)AS(d,p)
Aa(d,c) + AS(d,p)

g(d) h 3/2 exp {

2U (Te ) (27rmkTe ) 3/2e e

E
. }(3.32)

kT
e

where es is the amount of energy by which the doubly excited

state-exceeds that of the state (i). The state (i) is normally

taken to be the ground state.

The doubly excited state may also be collisionally de-excited

[equation (3.19)] and the conditions under which this is important

must be examined since if collisional de-excitation competes with

radiative the above arguments are no longer valid. The collisional

de-excitation rate coefficient for a state may be expressed in

terms of the lifetime of the state to radiative decay Tr(d,p)

(Bates and Dalgarno, 1962)

K (d,p) = b[10
- 2

9 A4/Tr(d,p)]cm3 sec
- 1

(3.33)

where the parameter b is a characteristic of the process and is

of order unity and X is the wavelength of the emitted phQton in

Angstroms. The lifetime of the doubly excited state toward

collisional de-excitation is (Bates and Dalgarno, 1962)

(3.34) -Tc(dp) =l/K6(dsp)ne seC.
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Substituting in equation (3-33) the ratio of collisional to radia-

tive lifetime is obtained

c(d,'P) 102 9 /b A4nT (d~pT = 10 /b X n e (3.35)
e

o 23
The ratio becomes unity for X = 30 A and b = 1 if n = 1023

-3cm . Thus at high electron densities collisional stabilization

of the doubly excited states may become important. At the

electron densities encountered in this investigation (ne = 2.2 x 1017

cm ) stabilization by radiative decay should dominate. It should

not be concluded however, that collisional processes between the

doubly excited states are unimportant.

Processes involving atom-atom, atom-ion, and ion-ion collisions

have rates which are much smaller than those involving electron

collisions if the degree of ionization of the plasma exceeds a few

percent. These various processes have therefore been ignored as

their contribution would be extremely small.

D. Equilibrium Relationships and Detail Balance

If multielectron atoms are present in the plasma, more than one

stage of ionization is possible and the various processes must be

considered in and between the various stages. The general procedure

to obtain the population density of the various quantum states

consists of setting up the rate equations for the various processes
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which have been discussed and solving them simultaneously. In

general, this is a laborious and time-consuming job and, in many

cases, a complete solution is impossible to obtain due to the number

of states involved. In complete thermodynamic equilibrium, each of

the processes discussed is just balanced by its inverse. In other

words, the pairs of processes occur in detailed balance. In this

situation, the distribution between two stages of ionization nZ

Z-1
and n is given by Saha's equation

n nZ r mkT 3/2 UZ(T 

e =2 e 2 e exp (- E /kTe) (3.36)
nZ-1 h2 UZ-_(Te)

where the U(Te)'s are the partition functions of the two atoms or

Z-1 Z-1ions and £ is the ionization potential of the atoms n

The population density of the state q of the ion nZ is related

to the total number density of nZ by the Maxwell-Boltzmann equation

(Cooper, 1966).

nZ(q) = gLq) exp (- E(q,p)/kTe) (3.37)
n UZ(Te)

Furthermore, the free electrons have a Maxwellian velocity distri-

bution and all distributions are characterized by a single temperature

T.

In astrophysical and laboratory plasmas, complete thermodynamic

equilibrium is almost never obtained. There are, however, two
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regimes where useful approximations can be made. If the plasma den-

sity is sufficiently high, then collisional effects will completely

dominate radiative effects and detail balance will be obtained

between the collisional rates. The distribution of electrons among

the various energy levels is the same as it would be if the system

were in complete thermodynamic equilibrium. Although the plasma

temperature and density may vary in space and time, the distribution

of electrons (both bound and free) depends entirely on local values

of temperature, density, and chemical composition of the plasma,

and hence this regime is called local thermodynamic equilibrium (LTE).

In plasmas, this equilibrium is characterized by the electron

temperature Te, since it is the electrons which dominate the

collisional processes. In order for radiative decay rates to cause

less than a 10 percent departure from LTE, the collisional rates

must be at least about 10 times the radiative rates (McWhirter, 1965).

This problem has been considered in detail by Wilson (1962), Griem

(1963), and McWhirter (1965). Each of these authors arrived at

essentially the same expression for the electron density required

for the collisional de-excitation rates to exceed the radiative

decay rate of a particular level with excitation energy E(p,q) by

a factor of 10, namely

1

n > C T E3(p,q) cm (3.38)e- e
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The three authors arrive at different values for the constant

C although all three values agree to within a factor of 2. The

values of C are 9.2 x 1011 (Griem), 1.3 x 1012 (Wilson), and

1.6 x 1012 (McWhirter). The inequality expressed in equation (3.38)

is a necessary but not a sufficient condition for a plasma to be

in LTE. The necessary and sufficient condition for the plasma to

be in LTE requires in addition that the lifetime of the plasma

exceed the relaxation time of the slowest collisional processes of

importance (Griem 1964). This condition is often not fulfilled in

laboratory plasmas.

If the plasma density is sufficiently low, radiative rates be-

come important and may dominate some of the collisional processes.

If the plasma is also optically thin, collisional ionization and

excitation may be balanced by radiative and dielectronic (although

this term was not originally included) recombination and spontaneous

decay. This is the model which has been proposed to explain some

features of the solar corona (Wooley and Stibbs, 1953; Elwert,

1952) and is often referred to as the coronal approximation. The

state of ionization in a plasma in coronal equilibrium is determined

by balance between collisional ionization from the ground state and

radiative and dielectronic recombination. Radiative recombination

into all levels is included, since recombination into an excited

level is immediately followed by spontaneous emission to a lower

level. Since the total transition probability

A(q) = E A(q,p) (3.39)

p<q
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from the excited level q is large (at least if q is not too large

as there will always be some q for which this is not true), the

lifetime of the state toward radiative decay is small (T = A (q)).

If the time between collision is longer than the lifetime of the

level (e.g., low density plasma) collisional excitation from the

ground state only needs to be considered, since the population of

the excited levels will be small. At equilibrium

nen (l)K(lc) =nen (1) [R(c,p) +Kd(C,p)] (3.40)

so that

n (1) K(l,c) (3.41)

nZ- (1) [R(c,p) +Kdc,pP)]

which is independent of the electron density and is a function of

electron temperature only. The ratio n /nz
-
1 depends critically

on the cross sections for the processes so that the accuracy of

the calculated values of the ratio will be determined by the accuracy

of the cross section used.

Post (1961) has calculated relative abundances of some common

impurity ions in laboratory plasmas using approximate cross sections

for hydrogenic (one electron) and lithium-like (three electron)

ions. His results indicate that Saha's equation does not accurately

predict the ratio n /nZ
- 1

in the coronal regime and that at

extremely high temperatures heavy ions may exist without being
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completely ionized. A comparison of the population density of

carbon ions calculated by the two methods for a density of n =

1017 cm
-
3

is shown in figure 2.

It has been pointed out by Burgess (1965a) that under certain

conditions, dielectronic recombination may compete with and may

even exceed the rate of radiative recombination (which was included

in equations (3.40) and (3.41)). Post's calculations did not

include dielectronic recombination.

Since collisional excitation and collisional ionization from

the ground state only is consistent with the coronal model, the

population density of the excited states of a species is obtained

by the balance between collisional excitation and radiative decay

(Cooper, 1966).

n (q)A(q) = n (l)neK(l,q) (3. 42)

Then,

n(q) neK(lq)
n(l) A(q) (343)

The rate coefficients K(l,q) [equation (3.18)] are, in general,

strongly dependent on the electron temperature. Since n(q) << n(l)

is required with 'the coronal model, these values must be investi-

gated by the substitution of known or estimated values.
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E. Application to Laboratory Plasmas

The coronal model has been discussed in the context of a steady-

state plasma in which it was assumed that changes in the population

densities of the energy levels caused by variations in the electron

temperature or density take place at a rate that is slow relative

to the rate of relaxation of the atomic processes. The application

of such a steady-state model to the analysis of pulsed high-

temperature laboratory plasmas leads to the result that the plasma

lifetime in the device is shorter or about the same as the relaxa-

tion times for the various dominant atomic processes (McWhirter,

1960). It is therefore important to consider a time-dependent

model to describe such laboratory plasmas.

In a time-dependent coronal model, the spectrum is no longer a

unique function of the local conditions in the plasma but will

depend on the past history of the density, temperature, and state

of ionization of the plasma. Mathematically, this means that a set

of differential equations must be solved to predict the spectrum.

If the plasma temperature and density vary with time as they cer-

tainly do in pulsed laboratory plasmas, the rate coefficient in the

differential equation will also vary with time. Some assumptions

must be made in order to apply such a model, including the

assumption that the free electrons interchange energy at a suffi-

ciently rapid rate by both elastic and inelastic collisions so that

despite the changing conditions in the plasma, the velocity

distribution is always closely Maxwellian. The same processes which
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dominate in the steady-state corona model are also assumed to

dominate in the time-dependent model (i.e,, excitation and ioniza-

tion by electron collisions and de-excitation and recombination by

radiative decay and radiative and dielectronic recombination, respectively).

These processes are not instantaneous, and therefore the bound electrons

have a finite relaxation time into the new population distribution.

This relaxation time is controlled by the slowest processes that

influence the population distribution. These processes are the

slowest ionization or recombination rates which are determined by

the coefficients for the last ion to be produced in the plasma

(Goldman and Kilb 1964, McWhirter 1965). For an ionizing plasma,

this is the ion of greatest charge, and for a recombining plasma

the ion of least charge.

The validity of such a time-dependent model is determined by

how well it predicts the time history of line radiation from the

various stages of ionization in a plasma with rapidly changing

density and temperature. The power radiated per unit volume per

unit solid angle per unit frequency interval is

e(v) = h-v 4(v)A(q,p)n(q) (3.44)
47T

where ¢(v) is the line profile and is normalized such that

J *(v)dv = 1 (3.45)
line
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The total power radiated in the line per unit solid angle is

hv
T = 4- A(q,p)n(q) (3. 46)

For a plasma in coronal equilibrium, the intensity of a line is

(McWhirter, 1965)

I(qp K(1,q) A(q,l)ds (3.47)
I(q,p) e A(q)

where equation (3.43) has been inserted for n(q) and the inte-

gration is over the depth of plasma viewed by the detector and it

has been assumed that the excited states are instantaneously in

equilibrium with the ground state. For a pulsed laboratory plasma,

ne, n(l) and K(l,q) may all vary with time, and it has also been

pointed out (Burton and Wilson, 1961) that the total number of

particles is not conserved due to escape of the plasma as well as

injection of atoms from the walls of the confining vessel. However,

McWhirter (1965) shows that if temperature and density vary compara-

tively slowly, the excited level population establishes itself

in a time which is just equal to the reciprocal of A(q)(i.e., the

lifetime of the excited level against radiative decay), and that

under these conditions the line intensity is given by equation (3.47),

because the excited state population is in equilibrium with the

ground state.

Investigations of the time dependency of line radiation have

been conducted on several pulsed laboratory devices, including the
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toroidal pinch (Burton and Wilson, 1961; Hobbs, et al., 1965) and

the linear theta pinch (Goldman and Kilb, 1964; Kolb and McWhirter,

1964). These investigations verified that the time-dependent

approximation could be successfully applied to laboratory plasmas

of short lifetimes. Furthermore, the work of Goldman and Kilb

(1964) and Kolb and McWhirter (1964) showed the applicability of

this type of model to the high-temperature plasmas produced in

theta pinches of the type employed in this investigation.

This investigation is concerned with the detectability of

radiation emitted in transition from doubly excited states [equation

(3.26)] and particularly if the satellite lines observed in theta

pinch plasmas could be due to those transitions with the doubly

excited state being formed by dielectronic recombination. The

number of doubly excited states which could in principle exist in

multielectron atoms or ions becomes exceedingly large as the number

of electrons increases. For this reason, the simplest case was

chosen for which doubly excited states could be formed [i.e., a two-

electron (helium-like) ion]. If the doubly excited state is formed

by inverse autoionization, then the rate at which they are formed

[equation (3.15)] will depend on the number density of one-electron

(hydrogen-like) ions available. The intensity of the satellite line

must also be compared to a known, easily detectable line in order

to determine the feasibility of detecting the line. For this

purpose, the resonance line of the hydrogen-like ion
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ls2 - 2p P3/2 (3.48)

was chosen. The satellite line would then correspond to a transi-

tion of the type

is ni - 2p nk (3.49)

with the prominent satellites due to n = 2. The upper state will

consist of two equivalent electrons for n = 2 and k = p. This

does not lead to any major problems but the equivalence of electrons

must be taken into account in the calculation. The presence of the

additional electron reduces the field in which the transition takes

place, consequently reducing the energy of the transition causing

the spectral line to be slightly shifted to the long wavelength

side of the hydrogen-like resonance line. Satellites due to n = 3

move closer to and become merged with the resonance line so that

they become undetectable. The elements which were investigated

were chosen on the basis that the temperature and density in the

theta pinch plasma be compatible with the existence of the desired

stages of ionization as well as requiring that the elements be

easily introduced into the deuterium plasma. Furthermore, it was

required that the hydrogen-like resonance lines lie in an

accessible region of the spectrum. Three elements were found to be

compatible with the above requirements: boron, carbon, and nitrogen.
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Since the coronal model (excluding doubly excited states) was

developed for plasmas of very low electron density, the applicability

of the model to the particular levels involved must be investigated.

This is necessary since the maximum electron density compatible with

this model is that density at which electron collisions start to

interfere with the assumption that the only mechanism by which the

excited level decays is spontaneous emission. The criterion of

applicability for the coronal model to the resonance transition is

then (McWhirter, 1965).

A(q) > n K(q,l) (3.50)

For the hydrogen-like resonance lines, q = 2 and A(q) = A(2,1).

The Einstein transition probability A(2,1) was calculated for the

three elements of interest using equation (2.67).[Equation (3.50)

would have to be modified slightly if doubly excited states are

included.] The collisional de-excitation rate was calculated from

equation (3.20) using an electron density of 2.2 x 1017 cm3 and

an electron temperature of 180 eV. The values of electron density

and temperature were experimentally determined and are discussed

in detail in Chapter IV. The results of these calculations are

presented in table III.1 and verify that, for the lines of interest,

the coronal model meets by a large margin the criteria of appli-

cability with respect to the electron density.
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Table III.1

-1A, sec
n K(2,1) sec 1

e

Boron V

Carbon VI

Nitrogen VII

48.587

33.736

24.781

0.5549

0.5549

0.5549

6.25 x 1012

1.30 x 1013

2.32 x 1013

n = 2.2 x 1017 cm
-
3

T = 180 eV
e

5.346 x 107

3.718 x 107

2.728 x 107

Ion
0

X, A
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The intensities of the hydrogen-like resonance lines as well as

the intensities of the satellite lines play an important part in

this investigation, as the intensity ratio of the satellite to the

resonance line established the criteria to determine if the satel-

lites were, in fact, due to transitions from doubly excited states.

The intensity of a spectral line emitted by a plasma in coronal

equilibrium is given by equation (3.47) in the optically thin

approximation. Since this investigation is concerned with the

intensities of hydrogen-like resonance lines (Lyman-a) which are

large contributors to optical depth, the assumption of optically

thinness at the center of the resonance line which is needed for

the coronal approximation must be considered further.

The equation of radiative transfer may be written (Chandrasekhar,

1950) for a homogeneous plasma

dI(v) = - I(v) + (3.51)()
dT(v) ct~v) (3.51)

where E(v) is the emission coefficient and a(v) is the absorp-

tion coefficient. In a uniform plasma e(v)/a(v) is independent

of the optical depth so that equation (3.51) has a simple solution

(Hearn, 1964)

I(v) = ( 1) [1 - exp ( - T(V)] (3.52)

For a line broadened by the Doppler effect

, . .

-,~~~~~ ;,,. -· . - . .' - ,. ,
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T(V) = T(V o ) exp [ - (V - v )2 /(Av )2] (3.53)

where T(V
o
) is the optical depth at the central frequency of the

line vo and Avo is the exp(-l) frequency of the Gaussian pro-

file. In a plasma close to LTE (i.e., collision dominated),

e(v)/a(v) is independent of frequency so that equation (3.52) may

be expanded and equation (3.53) substituted in the expansion.

Integrating the expression over frequency gives the total intensity

of the line (Burton and Wilson, 1961),

IT I(V)d= v ()o + .. .54)I
T

t-21 2 3 (3.54)

Equation (3,54) shows that, for To very small, the total

intensity is linearly proportional to the optical depth or, that is,

to the total number of atoms. However, if T is 0.3, the total

intensity of the line is off by 10 percent from the linear relation.

Therefore, the optical depth must be restricted to less than 0.3 in

collision-dominated plasma if the optically thin approximation is

to be correct to 10 percent.

In the coronal model, radiative decay is much greater than

collisional de-excitation so that the population of excited levels

is determined by both collisional and radiative processes and the

criteria for optical depth must be re-examined. This case, applied

to the hydrogen-like resonance lines (Lyman-a), has been investigated
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by Hearn (1964) using a model of the diffusion of resonance photons

in frequency space. The criteria for the validity of the optical

thin assumption are developed for Doppler-broadened resonance lines

on the basis of a two-level atom. The two-level atom gives a good

approximation to the Lyman-a line since the first excited level can

only decay radiatively to the ground level with the emission of a

resonance photon or it may be collisionally de-excited. The

probability b that the atom in an excited state will emit a

resonance photon is

b = + A(2,1)
neK(2,1) + A(2,1) (3.55)

Of these photons, a fraction k will escape and (1

be absorbed, producing excited atoms. Of these excited

fraction b will emit resonance photons and a fraction

will escape. The total fraction W of photons emitted

of an original excitation is

- k) will

atoms, a

k of these

as the result

W = k + b(l - k)k + b (1 - k) k + . . .

k
1 - b(l - k) (3.56)

The limiting optical depth for the approximation may be calcu-

lated for the value of k which is necessary to reduce W by, at
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most, 10 percent. If W is set equal to 0.90 in equation (3.56)

the optically thin criteria becomes

k > k 0.90(1 - b) (3.57)min - 0.90 b

Calculated values of b and k are given in table 111.2min

for the resonance lines of interest and for the approximate plasma

condition under which they were observed. The value of k for the

plasma was estimated from the relation (Hearn, 1964).

k = 1 - .erAnT) 1/2 (3.58)

where erf is the error function. Equation (3.58) is applicable

if T > 1. The calculated values of k are listed in table III.2
0

with the values of b and k i
n
. From table III.2 it is seen that

b is very close to unity and kin is quite small so that the

optically thin approximation for the total line intensity (not the

profile shape) based on the Hearn's (1964) model should be valid for

the lines investigated even though the optical depth calculated from

equation (3.10) with

~e2 F -1
ac(v) n(p)f (p,q) 2cm (3.59)

mc 42 (2-v
0

) + 2(
4r (v 9 ) (2)

(Aller, 1963), for v = v and r = A(2,1)
-

1 gives values of T
0 o

for a length of 137 cm) of about 103 for concentrations of

5 percent impurity (boron, carbon,
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Table III.2

Ion

Boron V

Carbon VI

Nitrogen VII

48.587

33.736

24.781

b

0.9999914

0.9999971

0.9999988

min.

7.7399 x 10- 5

2.6099 x 10- 5

1.0800 x 10
- 5

kcalc.

2.0 x 10-
4

1.6 x 10
-
4

1.0 x 10
-
4
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or nitrogen) in the plasma. [If the effect of Doppler broadening

(equation (3.53) is included T will be reduced and k increased]

This seemingly contradictory result is understandable since the reson-

ance lines are being considered. Since most of the atoms are in the

ground state absorption of the resonance photonwill excite an elec-

tron into the upper state of the resonance transition from which it

will decay radiatively (since collisional de-excitation is much smal-

ler than radiative decay) emitting a resonance photon. This process

may be repeated several times but in each case the photon does not

change appreciably in frequency, although it may change direction,

and will eventually (since k is large) escape from the plasma.

The optical depth of the satellite lines will be considerably less

than that for the resonance line. The optical depth of the satellite

may be estimated from the relation

T s

TLo. n 1(d)
i0 nl)
O

(3.60)

if it is assumed that both lines have the same shape. Equation

(3.60) follows from equation (3.59) with f(p,d) = f(1,2). The

calculated ratio in equation (3.60) is of the order of 10
- 4

so that

T
s
o TL a 10

-
(3.61)

0 0

so that for TL a t 103 the optically thin approximation will hold0

for T
s

since

0 O1 (3.62)
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The intensities of the Lyman-a lines of boron, carbon, and nitrogen

emitted by the plasma produced in the theta-pinch are then given by

equation (3.47) with p = 2. It is also assumed that the plasma is

uniform so that the integral in equation (3.47) is straightforward.

For a uniform thickness s of plasma, the intensity of the Lyman-a

line is

hv -2 -1
I(L ) = 4 n n(l)K(1,2)s, ergs cm sec (3-63)

The effects of cascading from higher levels has been ignored in

equation (3.63) as has the contribution to the intensity from un-

resolved satellites. This latter effect has been shown to be small

and, to the of accuracy of the measurements made here, may be

ignored (Gabriel and Paget, 1972). If the doubly excited states are

formed by inverse autoionization then the intensity of the

satellite line must be treated with a different approach than the

resonance lines where the upper state is populated by collisions from

the ground state. The intensity of the satellite may be obtained

from equation (3.46) by integrating along the line of sight of the

detector

I (d,p) =J h A(d,p)n(d)ds, ergs cm 2se (3.64)P) f 7r~~et (364

With the assumption of a uniform plasma, the intensity becomes
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I(d,p) = hv A (d,p)n(d)s, ergs cm 2 sec-l (3.65)

where d denotes the doubly excited state, p is the singly

excited state (after the transition), and n(d) is the number density

of doubly excited states. The number density of doubly excited

states n(d) was determined by use of equation (3.36) which gives

the equilibrium value. This is a reasonable approximation since

from equation (3.30) the number density of doubly excited states is

just the equilibrium value if As(d,p) << Aa(d,c). Estimates of

Aa(d,c) were obtained from the calculations of Perrott and Stewart

(1968) and Drake and Dalgarno (1970) and indicate a value of about

1014 sec
- 1

while the present calculation indicate AS(d,c) is

of the order of 10 sec
- 1

so that the assumption AS(d,p) << A (d,c)

is reasonable. With this result equation (3.30) becomes

n(d) < nE(d) (3.66)

and the number density of doubly excited states is independent of

the rate coefficient in this approximation. However, it should be

clear that electrons are lost from the doubly excited system at a

rate A (d,p)- 1 and must be supplied to the system at a rate

AS(d,p)- 1 which will only be true if, approximately

T-1 > AS(d,p) (3.67)
ee
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-10
For the plasma under consideration T e 1 10 sec (Spitzer,

1967) and calculations of AS(d,p), which were discussed in the last

chapter, indicate a value of 1010 sec so that the inequality of

equation (3.67) does not hold completely. Equation (3.36) does,

however, determine an upper limit to the number density of doubly

excited states and, even though the actual density in the experiment

may be well below this value, it is still useful in estimating the

maximum intensity the satellite line would be expected to have.

Since the intensity of the resonance line was determined in coronal

equilibrium rather than LTE, its intensity should be a minimum

[n(q) is coronal equilibrium is less than n(q) in LTE at the same

temperature (i.e. radiation rate > collisional rate)]. Therefore

the ratio of satellite to resonance line intensity should be a

maximum. Under the above conditions the intensity of the satellite

line is

s h4 v nenH ()g(d)A (dA p)sd, -2 -1
8 3/2 exp kT ergs cm sec (3.68)

(2r mkTe) g(l)

The ratio of equation (3.68) to equation (3.63) is

I h3 g A (d,p) 1 kT
=I(L a) (2 mkTe)3/2 2g(l) K(1,2) e

~~~~~~~~~~~~~(-ke

s

(3 .69)
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where it has been assumed that the frequency of the satellite line

is equal to the frequency of the resonance line to the accuracy

required. Using equation (3.18) for K(1,2) equation (3.69) becomes

3 s
R g(d) . As(d,p) E(2,1) expE(2,1)-

(2rmk)3/2 2g(l) 6.5 x 10
-

f(l,2)T e )

(3-70)

Setting E(2,1) = ( 4 Z2EH) and writing AS(d,p) in terms of its

oscillator strength [equation (2.67)] the ratio becomes

R = 3.5 x 109 exp (3-71)2k3/2 T f(1,2) ex kT

The oscillator strengths were set equal [i.e., f(d,p) = f(1,2)] since

in both cases the same "inner" electron is "jumping" and this should

be a good approximation. Equation (3.67) was evaluated for each of

the three elements of interest and for temperatures of 50,100,

150,200, and 250 electron volts. These results are given in table

-2, -4
III.3 and show that R ranges from 10 to 10 . Values of R

using the expression derived by Gabriel and Paget (1972) (who used

a different excitation cross section including a gaunt factor of 0.2)

are also given in parenthesis. Their ratios are typically a factor

of 2 to 3 higher than those calculated here (for nitrogen). In the

temperature range of interest (Z 200 ev) the satellites would be

extremely difficult to detect and consequently if observed intensity

ratios exceed the calculated values by large amounts the lines could

not be due to transitions from the doubly excited states.
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Table III.3

Element kT = 50 ev

-3
Boron 1.3 * 10

- 3

(3.1 . 10 3)

Carbon

Nitrogen

100 ev 150 ev

-4 -4
3.82 * 10 2.13 * 10

(9.0 · 10-3 )(5.15 * 1 0
- 4

)

7.16 · 10
- 3 1.55 * 10

- 3
7.75 * 10

- 4

(1.74 * 10 
-
2 ) (3.72 ' 10 3)(1.86 * 10

-
3)

3.84 . 10
-
2 5.7

(7.6 . 10- 2) (9.0

200 ev

1.45 * 10
- 4

(3.5 · 10 - 4
)

250 ev

1.11 . 10

(2.67 * 10- 4 )

5.06 ' 10
-
4 3.72 · 10- 4

(1.23 . 10-3)(8.95 . 10- 4 )

10
-
3 2.53 * 10

-
3 1.55 * 10

-
3 1.09 · 10

-
3

* 10-3)(5.0 · 10-3 )(3.0 * 10 -3)(2.0 * 10- 3 )



CHAPTER IV

EXPERIMENTAL METHOD

A. Theta-Pinch Device

The theta-pinch is one of several devices which were developed

for the production and confinement of high-temperature plasmas

relevant to the study of controlled thermonuclear reactions. The

production of such high-temperature laboratory plasmas at moderate-

to-high particle densities presented the opportunity for the study

of radiation emitted by highly ionized atoms and spectroscopy has

indeed served as a major means of diagnostics on these devices.

Extensive studies in various countries and over a wide range of dis-

charge conditions have established the basic characteristics of

this experimental configuration (Little, et al., 1962; Kolb, et al.,

1962; Goldman, et al., 1962; Beerwald, et al., 1962; and Bodin,

et al., 1962). The theta-pinch utilizes a fast magnetic compression

of an ionized gas to produce the high-temperature plasma. The

rapidly rising magnetic field, which makes the compression possible,

is produced by a large current passing through a single-turn coil

which surrounds the vacuum vessel containing the ionized gas. The

coil and field geometry are shown in Figure 3. The magnetic field

due to the current in the coil may be obtained from the integral

form of Amperes' law (Jackson, 1962)
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~ · * d = 4z I (4.1)

where I is the total current in the coil in statamps and B is

in Gauss. For the physical arrangement shown in Figure 3 and with

the length k of the coil much greater than its diameter equation

(4.1) gives

B (t) = 7 Ie(t) (4.2)

The time variation in Bz(t) induces an azimuthal electric field

in the ionized gas. This induced current field is given by Faraday's

law

1 aB
V x E G at (4.3)

For the particular case of a B field only, equation (4.3) becomes

r a (rEe) 1 i z (4.4)

The applied field has a frequency w and will be attenuated to

l/e of its original value in a distance (Spitzer, 1967; Jackson,

1962)

d = cm. (4.5)

1p - 2 )1
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where wp is the plasma frequency

CiP

1
2

-1
sec (4. 6)

For a typical experiment, the electron density, ne , is about 1016 cm-3

which gives

Wp = 5.6 x 1012

Typically, the driving field frequency w

105 sec 
-
1 , so that

. << 1

The depth of penetration is then

is of the order of

d = c = 0.536 x 10
-
2 cm

WI,

and the fields are restricted to

The radial electric field, Er,

to symmetry of the coil so that

becomes

the surface of the plasma cylinder.

should be independent of 8 due

aE r
a8 may be ignored. Equation (4.4)

aB
E = r z

E8 2c at (4.7)

-1
sec
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with Bz equal to its value at the surface of the plasma and r

equal to the radius of the plasma column.

The induced current then follows from Ohm's law

J = aE

where a is the conductivity of the plasma. The induced current

density is then

3B

JiB = Ee = 2 (4.3)

The Lorentz force acting on the plasma surface inward is given by

F= Jie x B (49)r c ie z

The current sheet initially moves inward at a high velocity and

heats the plasma. Further compression of the plasma occurs

adiabatically when the thermal energy of the plasma particle exceeds

the velocity of the current sheet. If end losses and radiation

cooling are ignored, the plasma will be compressed until the magnetic

pressure is equal to the internal pressure

= nkT + nkT (4.10)
8Tr =e ei
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The sum must extend over all of the various ions at their individual

temperatures. In general, the electrons and the ions will be at

different temperatures, since the electrons are compressed adia-

batically during compression of the plasma while the ions are shock

heated (Rose and Clark, 1961). In fact, the average radial speed

of the current sheet is of the order of 107 cm/sec. For the electrons

this velocity corresponds to a mean thermal energy of about 0.04 eV

which is considerably less than their actual energy which will be of

the order of a few eV, thus adiabatic compression results. For ions

the situation is quite different. The velocity of 107 cm/sec

corresponds to a mean thermal energy of 150 eV for deuterons and the

initial velocity of the deuterons will be much less than this. Since

the mean thermal velocity of the ions is less than the velocity of

the current sheet a shock wave will develop and the ions will be

heated by the passage of the shock wave (Rose and Clark, 1961).

However, since collisional rates for electrons exceed those for ions

it is the electron temperature that is generally of interest in the

discussion of the various atomic processes.

A common feature of the magnetically compressed plasma experi-

ments is the existence of a trapped internal magnetic field which,

depending on the plasma conductivity and breakdown conditions, can

reach large values antiparallel to the external field during compres-

sion. A number of authors (Kolb, 1959; Fay, Hintz, and Jordan, 1959;

Kolb, Dobbie, and Griem, 1959) have observed that the strength, sign,

and spatial distribution of the initially trapped magnetic field are
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the most critical parameters in these experiments. These values can

be varied to some extent by the addition of a static magnetic bias

field of variable sign and amplitude. Experiments on this technique

(Quinn, Little, and Ribe, 1960; Goldman, et al., 1959) have shown

the fundamental importance of the trapped field and also have shown

characteristic difference in the plasma behavior during compression

for the cases of bias fields parallel and antiparallel to the inter-

nal fields. With an externally applied antiparallel bias field, high

mean ion energies have been observed in the first compression half-

cycle (Little, Quinn, and Ribe, 1961).

The large current which is required in the single-turn coil is

produced by the discharge of a large capacitor bank. The requirements

on the capacitance, C, and inductance, L, of the system is governed

by the differential equation describing the current in an L-R-C

circuit

d
2
I(t) + R dI(t) I(t) (4.11)
dt2 L dt LC

R is the resistance of the system. Equation (4.11) is not strictly

true for the situation being considered as the presence of the plasma

which is being compressed causes L, R, and C to vary with time.

However, equation (4.11) is a good approximation to the circuit and

since the time dependence of L, R, and C cannot be easily

calculated the equation is used as is. If the inductance, resistance,

and capacitance satisfy the relation
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1 >> R
2

LC 4L2

the solution of equation (4.11) is the damped oscillatory current

I(t) = V () / 2exp(-yt)sin wt (4.12)

1/2
where w = (1/LC) , y = R/2L, and V is the initial voltage on

the capacitor. The maximum current is obtained when sin wt = 1.

/ 1/2
Imax = V0 (L) exp(-yt) (4.13)

The rise time (i.e., dI/dt) is

V

dtiLtt=O 0L (4.14)

Equations (4.13) and (4.14) show that a large maximum current with a

fast rise time may be obtained in the circuit with a large initial

voltage, a large capacitance, and a small inductance. The desired

ratio of a large capacitance to a small inductance is accomplished

by connecting a large number of capacitors in parallel to a collector

plate assembly which terminates in a single-turn coil.

The theta-pinch device employed in this experiment consisted of

three separate capacitor banks, each of which was connected to the

collector plate assembly with coaxial cables. The various parameters
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of these banks are listed in table IV.1. The bias field bank

established the slowly varying reverse magnetic field, while the

preheater bank heated and ionized the cold gas in the shock tube.

The large current required to produce the high magnetic field which

compresses the ionized gas was obtained by the discharge of the main

capacitor bank. This bank consisted of 410 capacitors connected in

parallel with one triggered spark gap for each pair of capacitors.

The bank could be switched in less than 25 nanoseconds (Oertel and

Williams, 1965). The single-turn coil had an inside diameter of 10

centimeters and was constructed of nine segments , each of which was

15 centimeters long. The segments were assembled with a 0.25 cm gap

between segments so that observations could be made perpendicular

to the longitudinal axis of the coil. This arrangement gave a

total coil length of 137 cm. The shock tube was constructed of

quartz (SiO2) and had an outside diameter of 9.6 cm., a wall thickness

of 0.5 cm., and a total length of 183 cm. The general physical

arrangement of the experiment is shown in Figure 4 and a schematic

of the electrical circuit is shown in Figure 5.

A schematic of the vacuum system is shown in Figure 6 and con-

sists of a mechanical pump which may be used to evacuate the entire

system to about 10- 2 torr and a turbomolecular pump which evacuates

the system to pressures of about 10
-
9 torr. The turbomolecular pump

is basically a turbine type and its principle of operation is a gas

molecule-wall collision process. The molecules enter the pump at the

inlet port, collide with all of the interior surfaces of the inlet
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Table IV.1

Main Bank
Bias Field
Preheater B

Main Bank
Bias Field
Preheater B

Main Bank
Bias Field
Preheater B

Radius
Length

Frequency

Coil

Load Inductance

Switching Time

Rise Time - Magnetic Field

Peak Current

Main Bank

- 5mF

Bank - 220 pF
;ank - 5 pF

- 20 kV

Bank - 10 kV
3ank - 20 kV

- 22 kHz

Bank - 10 kHz

lank - 200 kHz

- 5 cm
- 137 cm

10 Nanohenries

< 25 Nanoseconds

z 10 psec

12.7 meg Amperes

Capacitance

Voltage
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portion and some of them are accelerated axially toward the ends of

the pump when they are struck by the blades on the first rotating disk

(rotating at 16,000 RPM). The molecules are guided in the proper

direction by impinging upon the first set of fixed blades which are

oriented in such a fashion as to increase the probability of the

molecules being struck by the second set of rotating blades. This

process is repeated through several stages (nineteen on each side for

the particular pump used) resulting in a compression of the gas. This

compression depends on the relative motion of the blades and molecules

with the compression increasing as the blades move faster relative

to the molecules. The compressed gases are removed by the mechanical

pump and exhausted to the atmosphere. The leak rate of the vacuum

system was investigated by evacuating the system to its lowest pressure

and then closing the valve between the vacuum pump and the shock

tube. The pressure in the system was measured by means of a nude

ion gage and it was found that the system pressure had reached

1 x 10 torr at the time the fill gas was admitted into the shock

tube. While this leak rate was rather high it was thought at the

time that the background particle density at 10 6 torr (z 3.5 x 101

cm ) would not interfere critically with the investigation since

most experiments of this type employ oil diffusion pumps to evacuate

their systems and normally work with a base pressure of this magnitude.

Furthermore, the leakage was thought to be past the viton "0" rings

which sealed the quartz tube to the vacuum system and to repair

the leak would have required considerable time and effort. The leak
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was located in the latter part of the experiment and was actually

due to leakage past a valve stem which was repaired by simply re-

placing the valve. The operating conditions for the experiment are

listed in table IV.2.

The various elements whose spectra were to be investigated were

introduced into the deuterium fill gas prior to its introduction into

the shock tube. To insure that the gases were well mixed, a stain-

less steel tank equipped with a slowly rotating paddle was connected

directly to the vacuum system and served as a mixing and storage

tank. This tank was filled with deuterium to a predetermined pressure,

and the amount of the specific element required was added in a

gaseous form to obtain the desired percentage of the element in the

mixture. Carbon spectra were obtained by the introduction of methane

(CH4) or acetylene (C2H2), boron spectra by the introduction of di-

borane (B
2
H6), and nitrogen spectra by the introduction of molecular

nitrogen (N2). Normally, a volume sufficient for several hundred

shock tube fillings was mixed at one time, insuring that the gas

mixture did not change during the course of the investigation. The

amount of the impurity element which could be added was restricted

to 5 percent of the total volume. At higher concentrations, the

plasma did not reach a sufficiently high temperature due to radiation

losses, or the plasma column became subject to violent instabilities.

The gas was introduced into the shock tube through a leak valve.

The pressure in the shock tube was continuously monitored during

filling by means of a calibrated thermocouple gage. A filling

pressure of 50 millitorr, corresponding to a particle density of
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Table IV.2

Main Bank Energy

Peak Compression Field

Bias Field at Main Bank Discharge

Preheater Bank Energy

Initial Filling Pressure

Impurity Concentration

Discharge Sequence

Peak Voltage at Coil

Bias Field
Preheater
Main Bank

Bias Field
Preheater
Main Bank

660 kJ

90 kG

-2.2 kG

1 kJ

50 m Torr

Up to 5% of the
initial filling gas.

t=0
t=0

t = 25 psec

200 V
1.35 kV

10 kV
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15 -3
1.8 x 10 cm , was used in this experiment, as it was experi-

mentally determined that a higher filling pressure produced a plasma

of insufficient temperature while a lower filling pressure did not

produce spectral lines of sufficient intensity to allow photographic

recording with a single discharge. After filling the shock tube,

the three capacitor banks were charged and then dicharged in a

predetermined sequence. The bias field bank and the preheater bank

were discharged at the same time, producing a voltage at the coil

which consisted of the slowly varying voltage from the bias field

bank with the higher frequency voltage from the preheater bank

superimposed. The time at which the main bank was discharged was

determined by the requirement that the preheater plasma be relatively

stable and have a high degree of ionization at the start of the

magnetic compression phase. An investigation of the preheater plasma

indicated that a stable plasma having an electron density of about

1015 cm
-
3 and an electron temperature of from 1 to 2 electron volts

existed at 25 microseconds after the preheater bank had been

triggered (Oertel and Jalufka, 1966). This time delay for the dis-

charge of the main bank was used throughout this investigation.

An image converter camera, operated in the streak mode, was

employed to investigate the compression of the ionized gas. The

camera viewed a 0.25 cm portion of the plasma column through the

slit between two of the coil sections and near the center of the coil

assembly. The image of the plasma portion was streaked across a

film by the camera and the resulting photograph showed the time

history of the plasma column diameter during the Fompression of the
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plasma. Figure 7 is a tracing of a typical photograph taken with the

image converter camera. The total sweep time was 20 microseconds. The

preheated and ionized gas fills the shock tube to its full diameter

(8.6 cm) prior to the application of the main compression field. With

the application of the compression field, the plasma column

collapses radially, reaching its minimum diameter in about 2.5 micro-

seconds. This rapid collapse is followed by a relatively stable

period of about 10 microseconds with the luminous plasma column

situated at the coil axis. If losses out of the ends of the tube

are neglected and it is assumed that all of the ionized gas is swept

up ahead of the current sheet, then-the particle density in the

plasma column minimum diameter is given by

ni n no (4.15)
ni ne o

The filling gas is predominantly deuterium so that the ion density

ni is approximately equal to the electron density ne. The radius

of the plasma column before compression is ro and rc is the radius

of the collapsed column. From Figure 7, ro/r 11 and knowing the

initial density n
o
, the density in the collapsed column is

ni = ne = 2.2 x 1017 cm
-
3

This value is in very good agreement with the value of ne obtained

by a measurement of the absolute continuum intensity (Conrads and

Oertel, 1968).
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The electron temperature of the plasma was determined by the line

intensity ratio method assuming corona equilibrium which was justi-

fied in Chapter III. The intensity of a spectral line is given by

equation (3.47) and the ratio R of the intensities of two spectral

lines corresponding to transitions between states p, q in an ion of

charge Z + 1 and states i, j in an ion of charge Z is

R I(p,q,Z + 1) _ NZ + l(q)A(p,q)A(i,j) (4.16)
I(i, J, Z) NZ(j)A(i,j) X(p,q)

The density ratio of the upper states of the lines may be obtained

by assuming that the states are populated by electron collisions from

the ground state only as in the coronal approximation and ignoring

effects due to cascading. Using the expression due to Seaton (1962)

for the threshold excitation of ions, the ratio of the upper states is

Nl'(Z+lq) NZ+(1) f(r,q)E(s,j) expE( - E(1q)(417)
Z exp kTe (4.17)

N (j) N (l)f(s,j)E(r,q) e

where N Z+(1) and NZ(1) are the ground state population, the f's

are the absorption oscillator strengths, and the E's are the exci-

tation energy of the excited states above the ground states. The

ground state density ratio is obtained from the corona equilibrium

ionization equation. Using the expression given by McWhirter (1965),

which ignores dielectronics recombination
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z+1 1 kT 3/4
= 1.27 x 10 / exp k 

e

(4.18)
Z Z kT

N (1) E e

EZ is the ionization potential of the species of charge Z. Time

dependency has been ignored in equation (4.18) since the data was

obtained in a time integrated mode so that only average values were

obtained. This dependency would have to be considered if time

resolved intensities were recorded as there is some indication that

lines of a given stage of ionization appear at a higher temperature

in transient plasmas with rapidly rising temperature than in the

steady state coronal approximation. This is due to the finite

relaxation times of the ionization processes (Kunze, Gabriel,and

Griem, 1968). Equation (4.18) may therefore indicate a lower

temperature than that actually obtained. The effect of ignoring

dielectronic recombination may be estimated from the ionization

balance calculations for oxygen including radiative and dielectronic

recombination (Burgess and Summers, 1969). A comparison of their

values with those calculated from equation (4.18) indicates that at

16 -3
electron densities of 10 cm , the effect of including dielectronic

recombination is to shift the curves to a higher temperatures (by

about. 20%). At the higher densities obtained in this experiment

(i.e., 2.2 x 10 17cm 
-
3 ) the effect should be less due to the inverse

dependence of the dielectronic rate coefficient on the electron

density. At lower electron densities the effect would increase up to

a discrepency of a factor of 2 in the solar corona (ne ~ 108 cm3).
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McWhirter indicates that equation (4.18) should be accurate to + 50%

for the ratio of hydrogen-like ions to bare nuclei (no dielectronic

recombination possible for this case) but also points out that the

strong influence of the exponential should allow temperature to be

estimated to an accuracy of 10%. For the ratio of helium-like to

hydrogen-ions the results should be considerably poorer and the

above discussion would indicate that a factor of up to two in

temperature may be obtained. Substituting equations (4.17) and (4.18)

in equation (4.16), the intensity ratio becomes

R= A(p,q)X(i,j)f(l,q)E(1,j)l.27 x 10( 3/4e exp ( -E( >

A(i,j)X(p,q)f(l,j)E(l,q)( Z) 2 Te

(4.19)

If the resonance lines of the two successive stages of ionization

are used, then p = 1 and i = 1 . Equation (4.19) was evaluted

for the resonance lines of the hydrogen-like and helium-like ions of

oxygen over the range of temperatures expected. The results are

plotted in Figure 8 and the graph was then used to determine the

plasma electron temperature. Including the effects of dielectronic

recombination would shift the curve to about a 20% higher temperature.

Oxygen was chosen as the most convenient element since it is in-

jected into the plasma from the shock tube walls during the preheating

phase and also because the two resonance lines were separated by

0 0 o
only 2.63 A, (i.e., 21.602 A for helium-like and 18.969 A for

hydrogen-like) so the problem of film response as a function of
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wavelength was virtually eliminated. The intensities of the two

lines were measured from the microdensitometer trace of the spectra

which had been recorded on film. The spectra were recorded in the

time-integrated mode and the resultant intensities represented an

average over several cycles of plasma compression and expansion so

that the temperature obtained was at best an estimate. Furthermore,

the approximation that the upper states of the lines were populated

from the ground state only is somewhat suspect since both ions have

meta-stable states lying below the upper state of the resonance line.

These meta-stable states can be populated by radiative transitions

from higher states and, since they cannot decay to a lower state,

are depopulated by electron collisions. Thus the upper states of the

resonance lines may also be populated by electron collisions from

the meta-stable states. (Gabriel and Jordan, 1969) However, the

electron temperature obtained in this manner varied from 160 eV to

220 eV, which is in good agreement with the measured temperature

reported in other similar devices (Roth and Elton, 1968; Sawyer,

et al., 1962). More accurate measurements of the electron temperature

carried out on a similar experiment and based on Thompson scattering

of laser light indicate higher temperatures, up to about 240 eV.

(Kunze, Gabriel and Griem, 1968). This latter result appears to be

more in agreement with the inclusion of dielectronic recombination.

However the higher temperature would decrease the intensity ratio of

satellite to resonance line due to the T 1 dependence. At the lower

temperatures (i.e., T < 200 eV) the calculations of Landini and

Fossi (1971) indicate that dielectronic recombination should be
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important but not dominant. Using a simple result of Goldberg (1966)

the temperature at which dielectronic recombination is expected to

be a maximum is just equal to the wavenumber of the recombining ion

so that the lower temperature should be appropriate for boron V while

the higher temperatures would be more compatable with carbon VI.

The relevant plasma parameters are listed in table IV.3.

B. Grazing Incidence Spectrograph

The hydrogen-like resonance lines of the elements investigated

0
all lie below 50 A,which is beyond the range of normal incidence

vacuum spectrographs. The spectra were therefore obtained at grazing

incidence with a 1-meter radius of curvature, platinum-coated grating

rules with 3,600 lines/millimeter (Leybold-Heraeus GMBH and Co.).

The theory of the concaved grating and its use in the grazing

incidence mounting has been discussed in detail (Samson, 1967;

Beutler, 1945; Namioka, 1959, 1961; Mack, Stehn, and Edlen, 1932)

and no useful purpose would be served by repeating these discussions

here. Therefore, only those parameters of the grating and the

grazing incidence mounting which are pertinent to the analysis of

laboratory spectra will be discussed.

The optical arrangement for the grazing incidence mounting is

shown in Figure 9. The concave grating of radius of curvature R

is mounted tangent to the Rowland circle of radius R/2. If the

entrance slit lies on this circle at an angle of incidence a,

then the image will lie on the circle at an angle of diffraction 3.

These two angles are related by the grating equation
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Table IV.3

Electron Density

Electron Temperature

Electron-Electron Collision Time

Proton-Proton Collision Time

n = 2.2 x 1017 cm 3

kT z 180 to 200 eV

T z 10-4 psec
ee

T z=10-
2

Isec
PP
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mA = a(sin a + sin B) (4.20)

The grating factor a is the reciprocal of the number of lines per
o

Angstrom ruled on the grating, m is the order of the spectrum, and

X is the wavelength of the spectral line in Angstroms. The disper-

sion of the grating expresses how the various wavelengths are distri-

buted along the Rowland circle. The angular dispersion d$/dX is

obtained by differentiating equation (4.20). For a fixed angle of

incidence (a = constant)

dS m
dA a cos 8 * (4.21)d-'

=

a cos a

For an analysis of the spectrum, the actual number of angstroms

per millimeter dispersed along the Rowland circle is of more interest.

This quantity is called the plate factor and is the reciprocal of

the linear dispersion. The plate factor may be obtained from equation

(4.21). Referring to Figure 9

dX = dA do (4.22)
da dB di

and

d =- - RdB (4.23)



102

With these substitutions, equation (4.21) becomes

dA a cos 6(424)
d4 mR

In the grazing incidence mounting, the dispersion changes rapidly

with increasing wavelength so that the linear relationship used for

normal incidence mountings is not applicable and the dispersion curve

must be determined if accurate wavelength measurements are to be

made. Figure 10 is the theoretical dispersion curve which was cal-

culated for an 85° angle of incidence and a 1-meter radius of curva-

ture grating ruled with 3,600 lines per millimeter corresponding to

the instrument used in the experiment.

Closely related to the dispersion is a quantity known as the

resolving power. While the dispersion determines the separation of

two wavelengths (spectral lines), the resolving power determines

whether this separation can be distinguished. Each monochromatic

beam from the grating forms a diffraction pattern, the principal

maxima of which are represented by the order number m. Between

these principal maxima, secondary maxima are formed whose intensities

decrease as the number of ruled lines N exposed to the incident

radiation increase. In a normal laboratory instrument, these

secondary maxima are very much weaker than the principal maxima.

The angular half-width of a principle maximum dB is the angular

distance between the principal maximum and its first minimum and, for

a plane grating, is given by the expression
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d= No (4.25)

This width provides a theoretical limit to the resolving power of

the grating. If Rayleigh's criterion is used, two lines of equal

intensity will just be resolved when the maximum of one falls on the

minimum of the other. The resolving power P is defined as X/dA,

where dX is the minimum wavelength separation which can be resolved.

This minimum wavelength separation may be expressed in terms of d8

dl
d d = d (4.26)

Substituting in equation (4.25) the resolving power is obtained

P d = mN (4.27)

Equation (4.27) represents the theoretical limit of the resolving

power and whether this limit is achieved will depend on the quality

of the grating. The finite width of the entrance slit is also a

major factor in determining the resolution of a given instrument.

For the concave grating mountings the entrance slit to grating dis-

tance is equal to the image to grating distance so that the image

width can be no less than the slit width. This width, and hence

a measure of the limit of resolution imposed by the slit, may be

obtained by multiplying the slit width in millimeter by the equation
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0
(4.24) in A/mm. This value of dA ( and X at which it is

calculated) may then be used to obtain the resolution limit [equation

(4.27)]due to the slit width. It is clear from equation (4.27)

that the resolving power increases with the order number, m. The

major aberration of the concave diffraction grating is astigmatism,

which results in a point on the vertical entrance slit being imaged

into a vertical line; that is, focusing is achieved only in the

horizontal plane. (i.e., perpendicular to the slit height) The

theory of the astigmatism of a concave grating was first developed

by Runge and Munnkopf (1927). More recently the problem has been

dealt with in detail by Beutler (1945) and Namioka (1959, 1961). The

length of the astigmatic image is given by (Beutler, 1945)

[ cos s] + L[sin a tan a cos ] (4.28)

where the first term gives the contribution due to the entrance slit

of finite vertical length Z and the second term is the astigmatism

produced by a point on the entrance slit. L represents the length

of the ruled lines illuminated. Equation (4.28) indicates that the

image becomes less astigmatic near normal incidence and that astig-

matism is most severe at grazing incidence. While this astigmatism

does not cause the spectral line to be less sharp in the grazing

incidence mount it does greatly reduce the energy per unit length

received at the focal plane. For the grating used in this experiment

and with a 850 and 800 (corresponding to X 30 A) the
and with a = 85° and B = 80° (corresponding to X = 30 A) the
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first term of equation (4.28) contributes approximately 2Z to the

height while the second term contributes about 3L to height.

While some control may be exercised over the first term it is normally

small relative to the second term which for a given instrument is

controlled by the height L of commercially available grating. It

is possible,-of course,to mask the grating and reduce L but the

improvement in the image height is gained at the expense of

reduced intensity per unit area at the focal plane, since both inten-

sity and astigmatism are proportional to L.

Equation (4.27) is strictly true for a plane grating but is also

applicable to a concaved grating if the width of the grating is less

than its optimum value which is given below. Namioka (1959, 1961)

and Mack, Stehn, and Edlen (1932) have shown that for a concave grat-

ing the angular half-width of the principal maximum deviates from

that given by equation (4.25) and that the diffracted minima do not

reach zero. Therefore, a modified Rayleigh criterion was intro-

duced which states that two lines of equal intensity will be just

resolved when the wavelength difference between them is such that

the minimum total intensity between the lines is 8/r 2 (= 0.8106)

times as great as the total intensity at the central maximum of

either of the lines. With this new criterion, they have shown that

the resolving power of a concave grating is equal to mN when the

width W of the grating illuminated is less than or equal to Wopt

1.18. The optimum width is obtained from physical optics (Samson,

1967),
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W = 2.51 R3A cos a cos B /4

sin2a cos B + sin2 cos a /

For the 1-meter radius of curvature grating used in this experi-

ment at an angle of incidence of 850, the optimum width for a

detected wavelength of 50 A is 3.34 millimeters, which is much

smaller than the actual width of the 20-millimeter-wide grating used.

The greater width of the grating is beneficial in increasing the

intensity of a line in the focal plane, since intensity is propor-

tional to the area of the grating illuminated. Since the investiga-

tion required the recording of spectra from a pulsed discharge of

very short duration and since it was desired to record spectra with a

single discharge some resolution had to be sacrificed in order to

obtain sufficient intensities at the focal plane (i.e., a larger

grating was used in order to get more intensity which is dependent

on the ruled area of the grating). Thus the grating employed was a

compromise which gave adequate resolution with sufficient intensity.

For gratings having widths greater than the optimum width the

resolution is given by (Samson, 1967)

P - 0.75 (Wt) m (4-30)

Thus, if W > Wopt the resolution is independent of the width.
opt

Solving equation (4.30) for the grating used in the experiment,

the theoretical resolving power of the grating is
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X z 104 (4.31)dX

The actual resolution of the instrument does not depend on the

grating alone but depends on the slit width also. The slit must be

narrow enough to provide adequate resolution but still of sufficient

width to allow an adequate amount of light to pass.(i.e., the wider

the slit the more light is passed through.) Mack, Stehn, and Edlen

(1932) treat the slit and grating together, which is necessary if

the resolving power of each of the two elements is nearly equal.

If the resolving power of one element is greatly different from the

resolving power of the other element, then the resolving power of

the combination is determined by the smaller value. In practice

this is generally the case, with the resolving power being determined

by the slit width. The resolution is also degraded by thermal

broadening of spectral lines in the light source and also by the

film. For these reasons, it is more convenient to establish the

instrument resolution experimentally. This was accomplished by

recording, on film, the spectrum of a high-temperature aluminum

plasma, produced by firing a large pulsed ruby laser at a solid

aluminum sample. A microdensitometer trace of the film showed the

.0
aluminum VIII lines at 66.704 A and 66.731 X to be clearly resolved.

Therefore, the resolving power at 66 A is

Tx > 2000 (4.32)
d'" 20
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This procedure was also used to establish the optimum slit width.

A series of exposures taken of the plasma with various slit widths

showed that a slit width less than 17 microns only decreased the

intensity of the spectral line of the film without improving the

resolution. The calculated value of P corresponding to this

width and at a wavelength 66.7 A is P- 6,000. This slit width was

used for all spectra recorded in this experiment.

The physical arrangement of the components is shown in Figure 11.

The adjustable entrance slit, grating, and film holder are mounted

on a base plate with the grating holder and film holder attached to

arms pivoting around the center of the Rowland circle. The base

plate is mounted so that it may pivot around a vertical axis through

the center of the entrance slit. This arrangement allows the angle

of incidence to be varied between 800 and 890 without movement of the

vacuum housing or the experimental arrangement.

An aperture was inserted in the vacuum system between the shock

tube and the entrance slit of the spectrograph. This aperture con-

sisted of a 5-millimeter-diameter circular hole in a copper disk

about 1 millimeter thick. The disk was clamped between two flanges

with the geometrical center of the circular hole on the optical axis

of the system. This aperture prevented the spectragraph from "seeing"

the walls of the shock tube and, consequently, the radiation emitted

by the surface of the tube.

Photographic recording of spectra allows the recording of all

wavelength and line intensity data in a rather large portion of the
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spectrum with a single (or multiple) discharge of a laboratory experi-

ment. This is a distinct advantage if the plasma produced by the

experiment is not sufficiently reproduceable which is often the case.

The determination of intensities from the developed photographic

film, however, cannot be done directly. The quantity which can be

measured directly from the film is the photographic density D which

is related to the transmission T of the film. For visible and

ultraviolet light this relationship is (Mees, 1963)

D - Log1 0 (1/T) (4.33)

This photographic density is produced by the exposure E which is

the energy received by a square centimeter on the photographic layer

during the exposure time te. If the light flux is denoted by F(t)

the exposure is

i= j F(t)dt (4.34)
0

The density D which is produced on the film will depend on other

factors such as development time and temperature, the developer

solution used, age of the film and wavelength of the exposing light.

The quantities T and D cannot be absolutely defined as their

measurement willdepend on the densitometer used (light sources,

transmission of various components etc.). Therefore the film is

normally calibrated by exposing a section to a standard light source
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with different exposures. This is normally done by the use of a

stepped filter having transmissions of 100% to about 1%. The film

is then developed in the normal way and the density for each exposure

measured. The characteristic curve (H-D or Hurter-Driffield curve)

is then constructed by plotting the density D versus log
1 0 i. A

typical curve experimentally obtained in this manner is shown in

0
Figure 12. In the wavelength region below about 100 A the above

relationships do not hold. The large photon energies in this region

are sufficient to make an emulsion grain developable by the absorp-

tion of a single photon compared to the 3 or 4 required per grain in

the visible region. Thus if the film density D is plotted versus

the exposure i a straight line is obtained (Mees, 1963). This

situation eliminates the threshold of the emulsion which is commonly

encountered with the lower energy photons. A typical characteristic

curve obtained experimentally for this short wavelength radiation is

shown in Figure 13. Obtaining the necessary characteristic curve for

an emulsion in this region is extremely difficult due to a lack of

standard sources and density filters for use in the region. Since

relative line intensities were needed in order to determine the

electron temperature the following procedure was carried out in

order to obtain some information about the film characteristics.

Two different film strips (from the same roll) were employed, the

first being exposed to a single discharge and the second to two

discharges. In each case the initial filling pressure, bank voltage

and all other controllable parameters were the same. Furthermore
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monitoring of the continuum intensity (proportional to the electron

density) and the temperature insure that these parameters were the

same within a few percent on each discharge. The films were then

developed in the same solution for the same length of time and then

dried. These two films were then scanned on a microdensitometer at

the same sensitivity. Spectral lines throughout the region of

interest were compared and in each case their peak intensities

differed by 'about a factor of two indicating that the film response

was approximately linear in the region if zero threshold is assumed.

One disadvantage of the instrument is that the small diameter

of the Rowland circle (100 cm) prevents the standard thickness of

SWR glass plates from being used, as it proved impossible to bend

them to the required curvature without breakage. This particular

difficulty could be overcome to a certain extent by the use of

Ilford Q-2 plates. However, the emulsion on the Q-2 plates

saturated at a rather low level so that in order to record weak lines

it was necessary to grossly overexpose the more intense lines. The

data were finally recorded on 35-mm Eastman Kodak SWR film. This

film was not completely satisfactory, as it has a tendency to

stretch somewhat during development. The film also initially pre-

sented a problem in keeping it on the Rowland circle, as it tended

to curve after having been clamped in place and placed under vacuum.

This problem was resolved by mounting the film strip between two

flat, thin metal strips in a sandwich arrangement. The outer strip

had a horizontal slot 1 cm wide to allow the radiation to strike the

film. Further improvement was obtained by clamping only one end of



112

the film in the holder and then evacuating the system. The clamping

arrangement could be controlled from outside the vacuum so that the

second end of the film could be clamped after the required vacuum

was obtained. Some further disadvantages were encountered with the

films that also occur with the glass plates. This is the normal

difficulty with the Schumann-type emulsions which consist of grains

of emulsion supported from behind by a thin layer of gelatin. These

emulsions are very sensitive to pressure fogging, scratching, and

dust, which requires that they be handled with the utmost care. There

is also some variation in the sensitivity of the emulsion from box

to box.

After a film had been placed in the instrument and the instrument

had been evacuated, the recording of a spectrum proceeded in the

following manner. A valve between the spectrograph and the shock

tube was kept closed while the shock tube was evacuated to its base

pressure and then filled with gas. The capacitor banks were then

charged and, with the valve still closed, the discharge was initiated.

This procedure was followed and carried out a minimum of five times

before the valve between discharge and spectrograph was opened and

the exposure made. This procedure "cleaned up" the shock tube as

the accumulate contamination on the walls of the shock tube were

burned off by these preliminary discharges. Normally, a good exposure

was obtained with a single discharge.

After a film had been exposed, it was removed from the instrument

and developed. These films were developed by constant agitation for
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4 minutes in Kodak D-19 developer diluted in the ratio of three

parts water to one part developer. The.film was then rinsed in

deionized water for 10 seconds and then immersed in Kodak Rapid Fix

for 4 minutes. The fixing was followed by a 12-minute wash in

running water and then dried at room temperature (23° C). The temp-

erature of the developer, rinse, and fixer was kept at room tempera-

ture and the same development procedure was followed on each film.

After the film had dried, it was examined visibly and the necessary

identification information was put on the film. The film was then

scanned on a microdensitometer and the film, along with the tracings,

was stored until ready for data analysis.

In order to insure that the plasma conditions did not vary

excessively from discharge to discharge, a monitor system consisting

of a 1-meter focal length, normal incidence vacuum monochromater

(McPherson Instrument Corp.) using an EMI 6256 photomultiplier tube,

and a 1-meter focal length Czerny-Turner monochromater (McPherson

Instrument Corp.) using an Amperex 150 AVP tube was employed. The

vacuum instrument measured the total intensity of the ls2s S1 -

330 o0 33o
ls2p 3 P transition at 1637.96 A and the ls2s 3S

1
- ls2p 3P0 at

1639.58 A of 0 VIII together. In order to obtain the high stage of

ionization from which this radiation is produced, a fairly high

temperature is required. By recording the intensity of the line on

an oscilloscope, a time history was obtained. The appearance of this

line with a reasonable intensity was sufficient to indicate that

compression of the plasma had taken place and in conjunction with the
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second monochromater signal, which was indicative of the density,

indicated that the electron temperature had reached an acceptable

0
value. The second monochromater measured the intensity in a 15 A

o
wide band at 5221 A . At the high temperatures obtained in the plasma,

the radiation at this wavelength should be due to bremsstrahlung.

This was verified by spectra of the plasma recorded in this region

which showed no line radiation other than that from low stages of

ionization which would not exist at the higher temperature. The

particular region used showed no line radiation at all, so the

recorded signal was due to continuum radiation. Furthermore, during

the compression stage, recombination rates which decrease with in-

creasing temperature would be expected to lag ionization rates

(Kunze, Gabriel, and Griem, 1968) so that the continuum emission should

be dominated by free-free emission rather than free-bound. For a

Maxwellian distribution of electron velocities the free-free emission

coefficient, follows from Kramer's (1923) calculations

ff 16e6E nZ f1/2 hve T)

3c 3 (
6 7me3kTe) 1kTe

ff
The Gaunt factor g is a quantum mechanical correction and to

a first approximation is set equal to 1. The other symbols have

their usual meaning. Thus, the intensity of the free-free emission

is very nearly (at low percentage of contaminants) proportional to

ne so that variation in the intensity of this signal is indicative

of variations in the electron density (impurities can give a dominant
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contribution if high Z ions are present). Only a 10 percent

variation was accepted in these signals to insure that each spec-

trum was recorded under approximately the same conditions of density

and temperature. Typical traces obtained with the two instruments

are shown in Figures 14 and 15.

C. Data Analysis

The microdensitometer scan of the film provided a plot of film

density as a function of length along the film. Wavelengths of the

spectral lines were determined from these microdensitometer tracings.

Traces of carbon, nitrogen, and oxygen are always present as a

contaminant in the plasma and the hydrogen-like and helium-like

spectra of these elements lie in the region of interest so that a

convenient wavelength calibration was available on all the spectra

used. The various lines used for this purpose are listed in table

IV.4. The wavelengths and transitions of these lines were taken

from the tables of Kelly (1968). After the known lines had been

identified, the wavelengths of the unknown lines and, in particular

the satellite lines could be determined. The probable error of

the satellite wavelengths was established by comparing the position

of the known lines used as wavelength standards to the position

calculated from equation (4.20). The angle of reflectance B may

be written in terms of the linear distance X from the center of

the grating to the corresponding wavelength. From Figure 9,

(4.36)2 (- - 2B)
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Table IV.4

Transition

21 _ 3
ls2 lS ls2p P1

o0 1

ls2 lS
0
- ls3p P1

21 2 °
is 1 S -ls2p P1

21 °

ls 1
S - ls2p 1p

2 20

is 21/2 - 2p P3 /2

ls2 1 S -ls2p 3p0

21 1

is S -ies2p 10

ls 21/2 - 2p P3/2

121 2

is 2S1/2 - 3p /2

0

Wavelength, A

40.731

40.270

34.973

33.736

29.084

28.787

24.781

21.804

21.602

18.969

16.006

Ion

CV

CV

CV

CVI

NVI

NVI

NVI I

OVII

OVII

OVIII

OVIII
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Solving equation (4.36) for a,

T 2 (4.37)2 R

and using the trigonometric identity for the sin of the difference

of two angles gives

sin B = cos k (4.38)

The difference in the wavelength calculated and the published wave-

length of the line never exceeded +0.05 A over the range of interest

so that the calculated wavelengths of the satellites should be

within this accuracy.

An attempt to record the intensity, as a function of time, of

the satellite and the resonance lines was made. To this end the

film holder assembly was removed from the grazing incidence spectro-

graph and replaced by two photoelectric detectors. These detectors

consisted of a thin plastic scintillator (Naton 136) coated with a

thin aluminum film on both sides. The edge of the scintillator

served as the exit slit, while the aluminum coating prevented light

loss out of the sides. The back edge of the scintillator was opti-

cally coupled to a glass fiber light guide by a drop of high-

viscosity silicone oil. The other end of the light guide was placed

in front of the photocathode of an Amperex 150 APV photomultiplier

which was isolated from the vacuum chamber by a quartz (SiO2) window.
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While it was possible to obtain time resolved signals of the radiation

in this manner (in particular the resonance lines), it was not possi-

ble to observe the satellite lines. This was due to the low inten-

sity of the lines and also due to the large amount of scattered

light at these wavelengths. The scattered light is due to the

central image which contains all wavelengths of light. The use of

filters was not possible as this reduced the intensity of the satellite

as well as the scattered light. Therefore, the effort was abandoned

and no time resolved data were obtained.



CHAPTER V

RESULTS AND CONCLUSIONS

A. Results with Boron and Carbon

Long wavelength satellites to the hydrogen-like resonance line of

carbon VI were first reported in the spectrum of a theta-pinch plasma

by Roth and Elton (1968). These lines were observed in the spectrum

produced by several discharges using deuterium as a fill gas. The

facility used in this investigation is very similar to that used by

these authors and was expected to produce a reasonably similar plasma

(i.e., same electron temperature and density if operated under the

same conditions of filling pressure and main bank energy). Thus,

the reasonable starting point for this investigation was to obtain a

spectrum under the same experimental conditions as those used by

Roth and Elton (1968). Carbon along with other impurities such as

oxygen and silicon are always present in the discharge. The carbon

is due to vacuum pump oil (a hydrocarbon compound) which manages to

"backstream" past the liquid nitrogen cold trap between the vacuum

pump and the quartz (SiO2) tube containing the gas. Over a period of

several hours of pumping, the oil is deposited on the walls of the

quartz tube and is injected into the plasma along with the silicon

and oxygen during the preheating phase. The spectrum obtained

therefore contained carbon lines with very good intensity. 'After the

film on which the spectrum was recorded had dried, it was scanned
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on a Joyce-Loebl microdensitometer at a 50 to 1 scanning ratio so

that the distance between a given pair of lines was 50 times as

great on the recording as on the film. The microdensitometer employs

a single lamp to measure alternatively the transmission of the film,

and the transmission of a calibrated density wedge so that the photo-

metric density D is therefore recorded. While a spectrum was being

scanned on the microdensitometer, the spectral region of interest

was visually monitored through a magnifying glass to insure that all

weak lines were recorded and noted. The microdensitometer recording

of the film obtained with deuterium is shown in Figure 16. The

tracing shows 11 lines (Roth and Elton reported nine, one of which

was observed only in second order) to the long wavelength side of

0
the carbon VI resonance line at 33.734 A and lying between it ando

2 1p o o0
the ls S - ls3p P transition of carbon V at 34.973 A. The0 1

measured wavelengths of these lines are included on Figure 16 along

with the composition and initial pressure of the fill gas, as well

as the electron temperature estimated by the method discussed in

Chapter IV. The agreement between the observed wavelengths and the

calculated wavelengths of the satellites is in remarkably good

agreement. However, three of the observed lines correspond to

satellite transition where the upper (doubly excited) state cannot be

formed by inverse autoionization, as the process is forbidden by

parity. A comparison between these measured and calculated values

is given in table V.1.



121

Table V.1

o
Calculated Satellite Wavelength, A

33.849 (ls3pP° - 2 p3plD)

33-939 (ls3p3p° - 2p3p3 p)

34.029 (ls3s3S - 2p3s3Po)
34.032 (ls3s S - 2p3s P° )

34.086 (ls3p3P° - 2p3p3S)

34.125 (ls2plpO - 2p2 1S)

34.153 (ls3p3 PO - 2p3p3D)

34.247 (ls3p lp - 2 p3p P)

34.427 (1s2slS - 2s2plp ° )

34.586 (ls2plpO - 2p2 1D)

34.685 (ls2s3 S - 2s2p3 P0)

34.804* (ls2p3 pO - 2p2 3 p)

0

Observed Wavelength, A

33.85

33.96

34.10

34.17

34.24

34.35

34.52

34.68

34.79

*Upper level of this transition cannot undergo autoionization
(forbidden by parity).
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The intensities of these observed lines, however, were too low

to allow photoelectric recording which was required in order to

investigate the time history of the line intensities. This part of

the investigation was required in order to determine the stage of

ionization responsible for the formation of the doubly excited states

since the doubly excited state could be formed by inverse auto-

ionization involving free electrons and hydrogen-like ions or by

collisional excitation of both electrons of the helium-like ion.

This latter process is less likely since much more energy is in-

volved than in the formation from a free electron and a hydrogen-like

ion. The concentration of the hydrogen-like and the helium-like

ions would be a maximum at different temperatures and, for the tran-

sient plasma in the theta-pinch, at different times. This is borne

out by Figure 2 which shows the temperature dependence of the carbon

ions. Thus if the doubly excited state were formed by inverse auto-

ionization the intensity of the satellite would reach a maximum when

the number of hydrogenic ions is a maximum. This maximum number of

hydrogenic ions would be indicated by a maximum intensity of the

hydrogenic resonance line as indicated by equation (3.63). Thus

if,as expected,inverse autoionization were the mechanism by which

the doubly excited states were formed the satellite intensity should

reach a maximum simultaneously with the hydrogenic resonance line.

If, on the other hand, the doubly excited states were formed by

collisional excitation in helium-like ions (which is less likely)
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the satellite intensity would reach a maximum when the concentration

of helium-like ions is a maximum. This maximum would be indicated

by a maximum in the intensity of the helium-like resonance line.

Thus if collisional excitation were responsible for the formation

of the doubly excited states the satellite intensity should reach a

maximum simultaneously with the helium-like resonance line.

Furthermore, collisional excitation should lead to the formation of

doubly excited states which cannot autoionize and therefore cannot

be formed by inverse autoionization so that if collisional processes

were important satellites corresponding to transitions from these

states should be observed. In fact, three wavelengths (33.939 A,

o o
34.247 A, and 34.804 A) which were calculated for such transitions

were observed; however, this did not mean that all lines were formed

by collisional processes. The percentage of carbon in the deuterium

fill gas was increased to 2.5 percent by the addition of acetylene

(C2H2). The microdensitometer recording of the satellite lines

obtained on this film is shown in Figure 17. The interesting result

obtained is that there is no apparent increase in the intensity of

the satellites over the previous spectrum obtained with only deuterium,

even though there was a noticeable increase in the other carbon

0
lines (about a factor of two for the CV line at 34.973 A). A third

spectrum taken with the carbon concentration increased to 5 percent

produced the same peculiar result of increasing the intensity of the

normal carbon lines but with not apparent effect on the satellite

intensities. Higher concentrations of carbon were not attempted as
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impurity concentrations above this level were found to result in a

lower temperature plasma.

While the above result was surprising it did not prove conclu-

sively that the lines were not due to carbon. The rate coefficient

for dielectronic recombination was examined to determine if the above

result could be explained in terms of its temperature dependence.

An approximate general formula for the total rate coefficient Kd

has been derived by Burgess (1965b)

Kd = T 3/2 f(q,p)exp (- E(q,p) cm3sec (51)

e p

where f(q,p) is the oscillator strength and E(q,p) the energy of

the transition q - p with q the initial state of the recombining

ion. The function 4 is separable into two slowly varying functions

of Z, the charge of the recombining ion and of X = (Z + 1)
2

E
q,p

respectively, where e (Z + 1)2 is defined as the energy inq,p

Rydbergs of the transition p + q. The summation is carried out

over all excited states p of the recombining ion, of which the

first is usually the most important (Goldberg, 1966). Using this

approximate formula, Goldberg (1966) derives the temperature at which

K
d

has its maximum value. Goldberg obtains the relation

T = 0.96v K (5.2)max
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where v is the frequency of the resonance line of the recombining

ion in wavenumbers. Thus the simple rule for estimating the tempera-

ture at which dielectronic recombination is most effective(it can be

much greater than radiative recombination) is to take the temperature

equal to the wavenumber of the resonance line of the recombining ion.

Using this estimate one would expect dielectronic recombination to

be most- important for carbon VI at a temperature of 2.96 x 106 OK

(255.2 eV) which is slightly higher than the electron temperature

obtained in the theta-pinch plasma if dielectronic recombination is

ignored. Therefore, boron was chosen as the next element to be

0o
investigated since the resonance line of boron V at 48.587 A pre-

6odicts a temperature of 2.06 x 10 K (177.6 eV) at which dielectronic

recombination should be a maximum. This temperature is at the lower

end of the electron temperature range produced in the theta-pinch.

Boron was introduced into the experiment in the form of diborane

(B2H6) gas. This gas was only available as a mixture of diborane and

hydrogen with a maximum concentration of diborane of 10% (this con-

centration is set by the Interstate Commerce Commission). Thus the

maximum concentration of boron was limited to 2.5%. The micro-

densitometer recording of the spectral region on the long wavelength

side of the boron V resonance line obtained from this set of condi-

tions is shown in Figure 18. The region containing the calculated

o o
satellite wavelengths (48.743 A to 50.118 A) contains only three

lines, only two of which correspond in wavelength to the calculated
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values of the satellites and the third could be a silicon line.

Furthermore, both of these transitions have the same upper configura-

tion of 2p3p. This result was more surprising than the carbon re-

sults since 2p3p has five terms, two of which are forbidden by

parity from inverse autoionization (3p,1p). Of the remaining three

it seemed a bit unusual that only the 1D and 3D terms would be

observed with no indication at all of the 3S term. Furthermore,

the transition corresponding to the configuration 2s2p and 2p2

certainly would have been expected rather than those observed. The

intensities of the two lines were also greater than expected as the

intensity ratio of the observed line to resonance line was of the

order of 10- 2 which is larger than the calculated maximum ratio of

10
- 4

for the boron satellites. This indicated that the lines were

not satellites but had some other origin. The first film recorded

in the investigation was then reexamined and the microdensitometer

recording of the region on the long wavelength side of the boron V

resonance line is shown in Figure 19. The suspicion that the two

lines were not due to boron was confirmed as the two lines are still

in evidence in Figure 19 even though there was no boron in the

system and, in fact, the spectrum had been recorded before boron had

been introduced into the system so there was no possibility of boron

being present as a contaminant. Examination of the wavelength tables

of Kelly (1968) showed that the wavelengths of the two lines corres-

pond to transitions in argon IX. The origin of argon in the system

was not immediately apparent; however, argon had been used in the
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system in the past so it was not inconceivable that some argon was

still present in the system although any residual amount should have

been small and not of sufficient concentration to produce observable

lines. The possibility of the lines being due to argon was investi-

gated by introducing argon into the fill gas at a concentration of

100 ppm (0.01%) and a spectrum obtained. The microdensitometer

recording of the two lines recorded on this spectrum are shown in

Figure 20. Obviously, the two lines are due to the argon as the

line intensity of each exceeds that of the boron V resonance line.

Further examination of the spectra revealed that the intensities of

the lines to the long wavelength side of the carbon VI resonance line

had increased considerably. The microdensitometer recording of

these lines is shown in Figure 21. A further increase in the argon

concentration by a factor of ten (103 PPM or 0.1%) resulted in the

spectrum from which the microdensitometer recordings shown in Figure

22 (boron V resonance line region) and figure 23 (carbon VI resonance

line region) were made. These two recordings demonstrate quite

conclusively that the hydrogen-like resonance lines of boron and

carbon overlap with the argon ion spectra. The wavelength of seven

of the lines on the long wavelength side of the carbon resonance line

as well as the two lines on the long wavelength side of the boron

resonance line are listed in the wavelength tables of Kelly (1968).

Of the four remaining lines adjacent to the carbon resonance line

three have recently been observed and classified (Fawcett, Gabriel

and Paget, 1971). The observed wavelengths, tabulated wavelength
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of the argon ions as well as their transition and the wavelength

and transition of the satellite lines, calculated by the Hartree-

Fock program, are listed in table V.2. The last remaining line at

0
34.17 A could not be identified. While there appears to be a slight

increase in its intensity when argon is introduced into the plasma,

the increase is not of the same order of magnitude as that of the

other argon lines and is more of the order of a discharge to dis-

charge variation. The faintness of the image recorded on the film

makes a positive identification impossible, although the evidence

suggests that this very weak line may not be due to the argon. The

overlap of the argon ion spectra with the regions of interest pre-

cluded any further investigation until the origin of the argon could

be determined. Two possibilities for the introduction of argon into

the system were leakage of air into the vacuum system and contamina-

tion of the fill gas being used in the system in spite of the fact

that research grade gas was always used. Air contains 0.934% argon

by volume (Dubin, Sissenwine, and Wexler, 1962) which corresponds

17 -3
to a particle density of 2.51 x 10 cm at STP. If the residual

background gas in the vacuum vessel is assumed to contain the same

percentage of argon (i.e. 0.934%) then the background pressure of

1 x 10
- 6

torr would contain an argon number density of 3.3 x 108 cm-3

which at maximum compression would increase to 3.3 x 1010 cm
- 3

(i.e., a compression ratio of 100). A larger contributor to the

argon density, however, was the amount contained in the research

grade deuterium. A complete analysis of the gas obtained from the
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Table V.2

Observed
Wavelength, A

33.85

33.96

34.10

34.17

34.24

34.35

34.52

34.68

34.79

48.73

Argon o
Wavelength, A

33.84 Ar XI 2s22p4 3P

33.96 Ar XI 2s22p4 3P0
0g

34.10 Ar XI

34.24 Ar

34.35 Ar

34.52 Ar

34.68 Ar

34.79 Ar

48.73 Ar

XI

XI

XI

XII

XII

IX

Transition

2s2 2p3 (2p)3d3 Do

- 2s2 2p3 (
2
p)3d3 Do

2s22p4 3P2 - 2s2 2p3 (2 D)3d3 S0

2s22p4

2s22p4

2s22p 4

2s22p3

2s 2 2p 3

2s22p6

3P -
2

3 p -
2

3p -
1

4o
S3 / 2

40
S3/2

lS -

2s22p3(2 D)3d3S;

2s2 2p3 (2D)3d3D2

2s2 2p
3
(2D)3d

3
D

- 2s22p2(3p )3s4P

- 2s22p2(3P)3s4P3/ 2

2s 2 2p 5 (2pO)3s 1 [110

Calculated
Satellite 0

Wavelength, A

33.849 CV

33.939

34.029

34.032

34.086

34.125

34.153

34.247

34.427

34.586

34.685

34.804

48.743 BIV

48.872

49.002

49.006

49.084

49.18 Ar IX 2s22p6 1S0 2s22p5(2p0)3s 3 32 149.18

49.140

49.180

49.316

49.575

49.784

49.946

50.118
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supplier (The Matheson Company) showed an argon concentration of 15

PPM. This concentration amounts to a particle density of 3.3 x 1012

-3
cm , that is, two orders of magnitude greater than the background

gas. The intensity of a typical argon ion line in the wavelength

region of interest was estimated with the assumption that only two

ionization stages of argon existed (AXI and AXII) and using only the

concentration of argon in the deuterium fill gas (since the contri-

bution of argon in the residual background gas in the vacuum vessel

would contribute only one percent of the argon and could be ignored

without affecting the accuracy of the estimate). The ratio of A XII

ions to A XI ions was determined from equation (4.18) ignoring di-

electronic recombination. At an electron temperature of 200 eV the

ratio is

n (A XII) = 16.5 (5.3)
n (A XI)

If the effects of dielectronic recombination were included a

slightly lower ratio would result in equation (5.3). However, the

work of Burgess and Summers (1969) suggest that the correction would

be small and well within the approximations made in obtaining the

value in equation (5.3). Since the sum of the argon XI and argon

XII number density is assumed to equal the total density of argon,

the argon XII number density is

n(A XII) z 3 x 10 cm (5.4)
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The argon XII line radiation in the region of interest consists of

transition to the ground state at a wavelength which corresponds to

the transition from the doubly excited state in carbon V. Thus,

the excited argon XII level lies approximately 360 eV above the

ground state. The absorption oscillator strength for the argon XII

transition was estimated to be 0.3 by use of the Coulomb approximation

of Bates and Damgaard (1949). The rate coefficient for collisional

excitation K(l,q) (equation (3.18))was then evaluated using the

above values of f(l,q) and E(l,q) and an electron temperature of

200 eV. The results

K(l,q) z 1 x 10
-
8 cm3 sec (5.5)

was then substituted in equation (3.43) to obtain an expression for

the number density in the excited state

n() e A(q)10 (5.6)n(l) A(q)

Taking the upper state of the argon XII transition as the first

excited level (i.e., the only allowed spontaneous transition is to

the ground level) and using the previously discussed values of

n(A XII) and ne, the number density of excited levels becomes

22
1022 -3

n(2) cm10 (5.7)
A(2,l) c
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Using equation (3.65) for the intensity of the satellite line and

equation (3.47) for the intensity of the argon XII line the intensity

ratio of argon XII to satellite is approximately

I(A XII) 10 22

I(sat.) ~ Ad(p,q)n(d )

The number density of doubly excited states in carbon V for a 5%

concentration of carbon was determined from the Saha-Boltzmann

equation [equation (3.36)] since this gives a maximum, with plasma

condition of kT = 200 eV and n = 2.2 x 10 cm . The Saha-
e e

Boltzmann equation predicts for these conditions

n(d) S 1011 cm
- 3 (5.9)

The calculations of oscillator strengths as discussed in Chapter II

show that the transition probability for a typical carbon satellite

10 -l
is of the order of 10 sec 1 . Using this value the intensity ratio

of argon XII to carbon VI satellite becomes

I(A XII) 101 > 10 (5.10)
I(sat.)

Thus the intensity of the argon XII line due to the contamination in

the fill gas would exceed the intensity of the satellite by a factor

of 10 if the number density of doubly excited states is its
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equilibrium value. However, it has been pointed out that the life-

time of the doubly excited state to radiative decay is of the same

order of magnitude as the time between electron collision and there-

fore it would be expected that the population of the doubly excited

states would be below the equilibrium value. This condition was

verified experimentally by the installation of a deuterium gas

purifier. This purifier consisted of a palladium-silver element

heated electrically. The palladium-silver alloy has the unique

property of allowing only hydrogen (and its isotope deuterium) to

pass through a thin wall constructed of the alloy. Thus any element

heavier than deuterium is removed from the gas and only ultrahigh

purity deuterium is fed into the vacuum system. The purifier used

was constructed by the National Bureau of Standards (Gaithersberg,

Md.) and purifies hydrogen of 95% purity to a purity level which

could not be determined. A microdensitometer recording of a spectrum

obtained with the purified deuterium is shown in Figure 24. The

recording covers the region to the long wavelength side of the carbon

VI resonance line and shows a conspicuous absence of satellite lines.

A careful comparison of Figure 24 and Figure 16 shows that, at most,

only three lines are faintly visible. It was not anticipated that

the lines would disappear completely, as the concentration of argon

due to leakage of air into the vacuum system could not be eliminated.

That these three lines were not satellites was confirmed by the

addition of carbon to the system (up to 5%) with no observed increase

in their intensity.
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The establishment of detectable intensity ratios also indicated

that the lines which were observed could not be satellites. The

limit of detectability was determined (for the film used) by calcu-

lating the intensity ratio of the weakest detectable line in the

region of interest,to the carbon VI resonance line. It was assumed

that the film had a linear response as discussed in Chapter IV and

the profile of each line was assumed to be triangular. This ratio

indicated that an intensity ratio of about 10
-

3 could be detected

with certainty (which is about the maximum value for carbon at

temperature of 200 eV.) This limit was due to saturation of the

emulsion at the resonance line center and increasing the exposure

in order to increase the detectability of weak lines prevented the

determination of the recorded resonance line intensity and did not

show any satellites. Thus it was concluded that the transitions

involving doubly excited states were not observable under the

experimental conditions and that even if the satellites would have

appeared with a reasonable intensity the overlap of the argon ion

spectra would have rendered these two cases (boron and carbon) as

unsuitable for further investigation.

B. Results with Nitrogen

Since carbon and boron were shown to be unacceptable elements for

the experiment, the last element, nitrogen, which was feasible to

investigate in this experiment due to the accessability of the

hydrogen-like resonance line and since it was possible to produce

the hydrogen-like ion,--was introduced-into the plasma using the ultra
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high purity (using the palladium leak) deuterium as a fill gas. The

research grade nitrogen which was used contained about 5 PPM of

argon but since the percentage of nitrogen introduced into the sys-

tem would be small (a maximum of 3% N2 or 6% N) the total amount

of argon introduced into the system would only be about 0.3 PPM

9 -3
which would correspond to a particle density of about 7 x 10 cm

which is less than the concentration of argon in the residual gas

in the vacuum vessel. Figure 25 is the microdensitometer recording

of the spectrum obtained with 1% N2 added to the fill gas. The

recording covers the region to the long wavelength side of the N VII

o
resonance line at 24.781 A. Two lines are visible in the region and

their wavelengths are in resonable agreement with the calculated

values of two of the satellites. However, the intensity ratio of

the observed line to resonance line was found to be approximately

7.5 x 10- 2 (as determined by the method of the previous section)

which is larger than the maximum value calculated for the satellites

(even if the values obtained by Gabriel and Paget (1972) are used.)

Spectra at high concentration of N
2

(2% and 3%) were obtained and

the microdensitometer recordings of the region are shown in Figures

26 and 27. The two lines are obvious in both of these recordings

and the ratio of observed line to resonance line in each case is

the same as that obtained for the first case. This large intensity

ratio could not be resolved in the light of dielectronic recombination

and it was therefore concluded that the two lines were not due to

transition from doubly excited states but were more likely to be due
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to a contamination in the gas. Argon XII lines at approximately

these wavelengths have recently been identified by Fawcett, Gabriel,

and Paget (1971) and it was concluded that these lines most likely

were due to the argon contamination in the background gas. This

result was finally verified after extensive work on the vacuum

system which improved the base pressure to about 10
- 8

torr. Spectra

recorded under these conditions with 1% N
2
added showed that the

two lines were not produced and that no satellite lines existed

with sufficient intensity to be recorded. This situation existed

even for a spectra recorded with as many as six discharges on

a single film, even though the emulsion saturated at the center of the

resonance line. Table V.3 compares the observed wavelengths with the

calculated values of the satellite as well as the reported wavelengths

of the argon ions.

C. Conclusions and Limits of Laboratory Experiments

Laboratory observation of transitions from doubly excited states

in two electron ions does not appear to be very compatible with

experimental devices such as the theta-pinch, the limiting factor

being, of course, the low intensity of the spectral lines emitted in

the transition from the doubly to the singly excited state. The

experimental evidence indicates that even under the best conditions

the detectability of the lines would not be possible in such an

experiment with the photographic methods employed here. Even

resorting to multiple exposures in order to increase the density on

the film failed to show any evidence of satellites. This was due to
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Table V.3

Observed o
Wavelength, A

Argon Ion o
Wavelength, A

Argon
Transition

Calculated o
Satellite Wavelength, A

25.04

25.24

2s2 2 p 3 - 2s22p24dt

2s2 2p3 - 2s22p24dt

24.879
24.944*
25.001
25.014
25.053
25.082
25.102
25.172*
25.304
25.421
25.493
25.581*

Levels of these transitions have not been identified.

Upper level of this transition cannot undergo autoionization
(forbidden by parity).

25.07

25.25
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the increase in the film background density due to continuum emission

as well as scattered light from the central image (this is particu-

larly bad in grazing incidence mountings when looking at the shorter

wavelengths). Furthermore, the satellites are situated close to the

resonance line so that increasing the exposure would increase the

film density corresponding to the intensity in the wings of the line

which in turn is another contribution to the film background. A min-

imum intensity ratio of satellite to resonance line of about 10
-

3

would be required for the satellites to be detectable with the photo-

graphic method used here. This is the maximum value calculated with

the assumption of the doubly excited states being populated to their

equilibrium value and even if this value were obtainable it would

impose severe restrictions on such an experiment. There was, there-

fore, no experimental evidence to indicate that the process of di-

electronic recombination is important in the theta-pinch since no

lines which could be conclusively identified as true satellites were

observed. This does not imply that such lines are not emitted in the

plasma, but it does limit the intensity such a line would have which,

at best, is of the same order of magnitude as the background noise.

These conclusions also apply to previous experimental work in this

field in which a high temperature discharge has been used to observe

"satellites". In particular, in the experiments of Roth and Elton

(1968) a theta-pinch device was used with essentially the same filling

gas and electrical properties, since the design of the present experi-

mentis very close to that of NRL, Washington. The correspondence

between the lines identified here as argon and the fact that they

made no special efforts to obtain pure filling gas indicate that their
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identifications are in error. In addition, early work by Gabriel and

Jordan (1969) who also used a theta-pinch was also incorrect for the

same reasons. This has been confirmed by Gabriel (1971) (private

communication).

However, recently Gabriel and Paget (1972) have reported the

observation of satellites to the helium like resonance lines of

nitrogen and oxygen in a theta-pinch. Their intensities ratios were

of the order of their calculated values (i.e., a factor of 2 or 3

higher than the values calculated here). Wnile oxygen satellites

were not investigated in this experiment the results of Gabriel and

Paget (1972) with nitrogen indicates that the failure to observe

satellites in this experiment should have some reasonable explanation.

The most probable explanation is based on the inverse temperature

dependence of the intensity ratio. In the experiment discussed here

the effect of dielectronic recombination was not taken into account

in the calculation of the ionization balance required in the tempera-

ture determination. If this effect had been properly included or if

a more accurate temperature measurement could have been made (by

Thomson scattering) a higher temperature than the 200 eV obtained may

have been found which would decrease the intensity ratio. Further-

more, higher electron densities were obtained in this experiment (by

up to a factor of 10) which would give a smaller rate coefficient

for dielectronic recombination. Further investigation would be re-

quired in order to determine which (if not both) of the two factors

were responsible for the null result obtained.

Our conclusions that there is as yet no absolutely firm

laboratory evidence for the formation of "satellites" by the process
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of dielectronic recombination, does not mean that it is not an

important astrophysical process. In fact, the circumstantial evi-

dence from ionization balance is very convincing. However, the

change overlap of argon with other spectra, as reported in this work,

indicates that the identification of observed "satellites" in solar

spectra (Fritz, et al., 1967; Rugge and Walker 1968; Jones, Freeman

and Wilson 1968; Walker and Rugge, 1970) should be closely examined

and the relative intensities carefully checked.

D. Suggestions for Future Work

The use of laboratory experiments to investigate the processes

of dielectronic recombination still warrants further consideration.

While the use of plasma devices such as theta-pinch for the investi-

gation does not appear to be the most profitable due to lack of ob-

servation of the satellite lines for the case investigated here,

other devices may be able to make a contribution in this area. The

device commonly referred to as a sliding spark (Conrads and Hartwig,

1964), having a lower temperature than the theta-pinch (since R is

proportional to T ) could be advantageous although the higher den-

sity could be a disadvantage. In fact, satellite lines of carbon

were first observed in a spark device (Edlen and Tyren, 1939) however,

it is not clear whether dielectronic recombination or electron-exci-

tation forms the doubly-excited states. While the diagnostics of

such a device would be considerably more difficult, an investigation

of the observed satellites in such a device should be carried out.

Low temperature plasma devices in conjunction with a higher energy

electron beam to excite the ions of interest would probably prove the

most useful for this sort of investigation.
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Figure 23
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Figure 26
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